
Ulm University | 89069 Ulm | Germany Faculty of
Engineering
and Computer Science
Institute of Databases and In-
formation Systems

Technical Conception and Implementation
of a Configurator Environment for Process-
aware Questionnaires Based on the Eclipse
Rich Client Platform
Master thesis at Ulm University

Submitted by:
Juri Schulte
juri.schulte@uni-ulm.de

Reviewer:
Prof. Dr. Manfred Reichert
Dr. Vera Künzle

Supervisor:
Johannes Schobel

2014

Version April 23, 2014

c© 2014 Juri Schulte

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/ or
send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105,
USA.
Satz: PDF-LATEX 2ε

Abstract

Questionnaires are one of the fastest and easiest methods for inquiring

information about a required topic. Especially the more and more ad-

vancing online connectivity and mobile accessibility offer additional pos-

sibilities, like working collaboratively from different places or store results

centrally, to make it an even faster and more comfortable tool for data col-

lection. Several existing software approaches to create questionnaires –

called questionnaire configurators – are available and expensively tai-

lor functionality to the needs of the target group. In this thesis an ap-

proach is presented, which outsources tasks to functionality provided by

a process-aware information system (PAIS). To offer extensibility for up-

coming needs, a generic questionnaire model is the basis for an integra-

tion of a PAIS into a questionnaire configurator environment. The result

is called a process-aware questionnaire configurator and is discussed re-

garding its architecture and implementation. With an implemented proto-

type of a process-aware questionnaire configurator an insight is granted

into a concrete implementation based on the Eclipse Rich Client Plat-

form.

iii

iv

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Summary of Contribution . 2

2 Fundamentals 3

2.1 Questionnaires . 3

2.1.1 Definitions . 4

2.1.2 Measuring Scales . 5

2.1.3 Elements . 7

2.1.4 Construction of a Questionnaire . 8

2.2 Process-aware Workflow . 9

2.2.1 Activities . 10

2.2.2 Data Elements . 11

2.2.3 Branches . 12

2.2.4 Loops . 13

2.3 Eclipse Rich Client Platform . 13

2.3.1 RCP Components . 14

2.3.2 RCP Workbench . 16

2.3.3 RCP Application Model . 18

3 Related Work 21

3.1 Web-based Applications . 21

3.2 Desktop Applications . 24

3.3 Mobile Applications . 26

3.4 Summary . 27

4 Process-aware Questionnaires 29

4.1 Requirements on the PAIS environment . 29

v

Contents

4.2 A Technical View on Generic Questionnaires 30

4.3 Integration of Questionnaires in Process-aware Information Systems 33

4.3.1 Constraints within Questionnaires . 36

5 Architecture and Implementation 39

5.1 Core Components . 39

5.1.1 User Interface Components . 40

5.1.2 Background Components . 43

5.2 Persistence . 46

5.2.1 Direct Database Connection . 47

5.2.2 Web Services . 49

5.2.3 Summary . 49

5.3 Design Patterns . 50

5.4 Usage of the Rich Client Platform . 53

5.5 Summary . 56

6 Conclusion 57

7 Future Work 59

A The Process-aware Questionnaire Configurator Prototype 61

Bibliography 67

vi

List of Figures

2.1 Filter including the questions from example 1 - 3. 8

2.2 ADEPT2 example for an ordering process. 10

2.3 Overview of important RCP components. 14

2.4 An RCP workbench example including a window with a menu, tool bar, part

stack and three parts. 17

2.5 The internal steps for building a workbench. 18

3.1 The QuestionSys questionnaire configurator (see [28]). 22

3.2 The LimeSurvey questionnaire configurator. 23

3.3 The SurveyGold questionnaire configurator. 25

3.4 The StatPac questionnaire configurator. 25

4.1 A schematic representation of a questionnaire as a container for question

pages (questionnaire layer). 31

4.2 A schematic representation of a questionnaire page as a container for ques-

tion elements (page layer). 31

4.3 Example for a process-aware questionnaire at element level. 34

4.4 Example for a process-aware questionnaire at page level. 35

5.1 Core components of the architecture of a process-aware questionnaire con-

figurator. 40

5.2 Excerpt of the element builder environment of a process-aware question-

naire configurator prototype. 41

5.3 Excerpt of the modelling environment of a process-aware questionnaire con-

figurator prototype. 42

5.4 Status bar of a process-aware questionnaire configurator prototype. 44

5.5 Architecture of the persistence components of a process-aware question-

naire configurator prototype. 47

vii

List of Figures

5.6 Excerpt of the questionnaire management of a process-aware questionnaire

configurator prototype. 51

5.7 The hierarchical agent structure of the PAC pattern for the questionnaire

managment in figure 5.6. 52

5.8 The hierarchical agent structure of the PAC pattern for the questionnaire

managment using RCP. 54

A.1 Welcome perspective of a process-aware questionnaire configurator prototype. 61

A.2 Workspace perspective of a process-aware questionnaire configurator pro-

totype. 62

A.3 Questionnaire perspective of a process-aware questionnaire configurator pro-

totype. 62

A.4 Questionnaire configuration perspective of a process-aware questionnaire

configurator prototype. 63

A.5 Simple element builder of a process-aware questionnaire configurator proto-

type. 63

A.6 Complex element builder of a process-aware questionnaire configurator pro-

totype. 64

A.7 Adding a sensor for a complex element in a process-aware questionnaire

configurator prototype. 64

A.8 Multimedia elements in a process-aware questionnaire configurator prototype. 65

A.9 Questionnaire builder of a process-aware questionnaire configurator prototype. 65

viii

1 Introduction

Questionnaires are an inexpensive method to collect large amounts of data in rather short

time. Nowadays, the creation of such questionnaires is supported by software applications,

called questionnaire configurators, by providing an (more or less) extensive set of tools

and mechanisms to manage a questionnaire’s life cycle. If this life cycle is transferred to

a process-aware information system (PAIS) [25] common tasks, like the questionnaire ex-

ecution, could be automated and even extended [9]. Although questionnaires have been

extensively studied in the last decades, the focus lays primarily on structural [2, 14], repre-

sentational [21] and content-related [2, 27] aspects, disregarding the technical view. Avail-

able configurators are mostly proprietary software applications tailored to the specific needs

of a target group and unavailable for research purposes. This thesis therefore develops an

approach, which integrates PAIS functionality in a questionnaire configurator, and validates

the resulting benefits by implementing a process-aware questionnaire configurator for the

first time.

Therefore the sociological fundamentals of questionnaires and technical aspects of a PAIS

are outlined in chapter 2. This includes an overview of the Rich Client Platform (RCP) as

well, which is used for the implementation of a prototype of a process-aware questionnaire

configurator. In chapter 3 existing questionnaire configurators are analysed to create a

generic questionnaire model in chapter 4. The latter defines the basic construction pattern

of every questionnaire and catches deviating characteristics through extension points. Af-

terwards this generic model is transferred to the ADEPT2 PAIS theoretically and then in

chapter 5 practically. For the practical realisation an architecture is provided, which dis-

cusses important components, aligns them with well-known design patterns and enriches

them by RCP functionality.

1

1 Introduction

1.1 Motivation

Questionnaires are used in a wide area of applications, including marketing research, em-

ployee feedback, recording medical backgrounds, etcetera. Data can be collected anony-

mously and through different channels (e.g., pen-and-paper based or internet based) with-

out the mandatory presence of an interviewer. Furthermore, questionnaire configurators

– and therefore software applications – offer supplementary tools to integrate multime-

dia content, share questionnaires online, store results centrally, analyse results and many

more. In addition, computer supported questionnaires can be beneficial, if the survey topic

is computer-related [29] in the first place. As a result, feature-rich configurators are of great

concern for any kind of data collection and therefore of high commercial interest. With the

access to PAIS functionality a configurator is extended by several strong features, like au-

tomatic questionnaire execution or access rights through organisational models, which are

already available and do not require an implementation from scratch.

1.2 Summary of Contribution

The main contribution of this thesis is an approach for an extensible and flexible process-

aware questionnaire configurator. This includes initially an analysis of consistent ques-

tionnaire parts and extensions. A generic model, which describes the structure of every

possible questionnaire, is extracted and discussed regarding its similarities to a process

model. On this basis an approach is developed to represent this generic model as a spe-

cial kind of process and therefore use PAIS functionality to support a questionnaire’s life

cycle. With an architecture including components, design patterns and a development plat-

form, a recommendation for an implementation is provided and validated by an exemplary

prototype for a process-aware questionnaire configurator.

This paves the way for thin questionnaire configurators, which outsource functionality to

existing applications. From a general point of view, a new challenge is transferred to an

existing problem for which a solution is already available.

2

2 Fundamentals

A configuration system for process-aware questionnaires requires the merge of research

areas from two diverse domains: On the one hand psychology knowledge regarding the

structure and construction of questionnaires, on the other hand a profound technical un-

derstanding of process-aware information systems. In the following sections we cover the

requirements for a fundamental understanding of both branches. Special focus lays on the

technical aspects.

In section 2.1 questionnaires are analysed regarding their construction and relevant parts.

Afterwards in section 2.2 the fundamentals of process-aware workflows are covered. The

content of section 2.1 and section 2.2 is required for the approach of a process-aware

questionnaire in chapter 4. Section 2.3 gives an insight to the Eclipse Rich Client Platform

which is used in chapter 5 for the software architecture of a process-aware questionnaire

configurator.

2.1 Questionnaires

Questionnaires belong to the empiric research in social sciences. In the empiric research

there are two different approaches of gaining information about a predefined topic. Firstly,

qualitative research methods which define a thematic guideline, but avoid standardised pro-

ceedings. These methods are flexible and exploratory approaches with the aim of building

a hypothesis. Take for an example a group discussion of the topic ’Should smoking be pro-

hibited’. The topic is predefined and a moderator lets the participants offer their opinions.

The opinions are written down and analysed later on.

Secondly, quantitative research methods which focus on building a universal model with a

representable number of samples. This model usually proves or refutes a predefined hy-

pothesis. To gain comparable information, the same requirements have to be provided for

3

2 Fundamentals

each respondent. The quantitative methods are therefore usually fully standardised. Ques-

tionnaires in written form belong to this quantitative research method. [31]

Definition 1 (Questionnaire)

“A questionnaire is defined as a document containing questions and other types of items

designed to solicit information appropriate to analysis.” [3]

The great number of questionnaire types is categorised by its process. There are personal,

telephone, written and online questionnaires. As described in definition 1 questionnaires

provide analysable measurable data. Depending on the question this data can be inter-

preted more or less precisely (see section 2.1.2). To fulfil this goal a set of elements (see

section 2.1.3) is necessary. Besides questions, text and media fragments are important

parts of a questionnaire. These elements are ordered to determine a sequence through

the questionnaire. A modification of the sequence is possible through filters (see section

2.1.4). First of all section 2.1.1 covers the basic vocabulary to work with questionnaires.

2.1.1 Definitions

Questionnaires gather data and interpret this data to obtain information. Processable and

therefore interpretable and meaningful data has four properties. It is valid, reliable, rep-

resentative and unbiased. [19, 23] These properties are discussed using the following

definitions.

Definition 2 (Validity)

“A study has a high validity if the results allow only a unique interpretation.” [23]

Valid data has a high content-related expressiveness.

Definition 3 (Reliablity)

“The repeatability of an instrument.” [27]

Reliability describes the fact that an extracted result is constant through several repeated

experiments. Reliable data requires always a representative number of samples.

Definition 4 (Representative)

“Random samples are representative if their characteristic reflect the characteristic of

the entire population.” [23]

4

2.1 Questionnaires

If the number of random samples is too small or does not cover a heterogeneous group

the data is not representable. Reliable data requires always a representative number of

samples.

Definition 5 (Unbiased)

“The stability of an instrument independent from environment variables and the person

who uses it.” [27]

For the avoidance of disturbances and errors an unbiased environment has to be created.

For example setting a default answer like ’Yes’ or ’No’ for a Yes-or-No question will affect

the choice of the respondents.

If a questionnaire produces valid, reliable, representative and unbiased data we call it a

standardised instrument. For a standardised instrument the validity of its elements is as

important as the valid order of the elements.

2.1.2 Measuring Scales

Questions provide the data needed for analysis of a questionnaire. To analyse empiric

magnitudes, answers are mapped to measurable numbers. Therefore a scale is defined for

every question. Every scale has a different set of comparative operators M . Comparative

operators define in which ways gathered data can be transformed without any information

loss. The larger the set of operators, the higher is the expressiveness of the scale. Four

different scales with a static set of comparative operators are distinguished:

The Nominal Scale (M = {=, 6=}) contains the smallest set M of comparative operators

and is therefore the most inaccurate scale. It only checks the data for equality and thus

for inequality either. As shown in example 1 the answers only indicate whether position

1 = Yes or 2 = No was chosen. There is no information about the hierachic relation

between the two options included.

5

2 Fundamentals

Example 1 (Nominal Scale)

Do you smoke?

1. Yes

2. No

Example 2 (Ordinal Scale)

How many cigarettes do you smoke a day?

1. 0 - 5 cigarettes

2. 5 - 15 cigarettes

3. > 15 cigarettes

This is provided by the Ordinal Scale (M = {=, 6=, <,>}). In addition to the check for

equality the answer options can be compared to each other (less or greater). In example

2 option 2 includes a greater amount of cigarettes than option 1, i.e., respondents who

choose option 2 smoke more cigarettes than respondents who choose option 1.

The Interval Scale (M = {=, 6=, <,>,+,−}) allows through the comparative operators ’+’

and ’-’ a more precise comparison of the replies. Next to the rough information about the

relation (less or greater) the precise difference can be calculated. Applied to example 3 the

time difference between two respondents started smoking allows very clear statements:

If respondent A started smoking in the year 1960 and respondent B started in the year

1980, respondent A smokes 20 years longer than respondent B. Although it is obvious for

a human that respondent B has been smoking twice as long as respondent A, if the survey

had taken place in the year 2000, this is not directly included in the data. Therefore the

proportion of the numbers does not correlate with the manifestation of the characteristic.

Example 3 (Interval Scale)

In which year did you start smoking?

In year ____ .

Example 4 (Ratio Scale)

How many years have you been smoking?

____ years.

This fact is covered by the Ratio Scale (M = {=, 6=, <,>,+,−,×, /}) which requires an

absolute zero. If the question from example 3 is rewritten as shown in example 4 the value

directly reflects the years the respondent has been smoking. The value zero defines that a

respondent has not been smoking a year yet. As a result, statements about the ratio can

be made, like ’Respondent C smokes for 20 years and respondent D smokes for 40 years,

therefore respondent D smokes twice as long as respondent C’.

In practice the distinction between the Interval Scale and the Ratio Scale is mostly irrele-

vant. With the operators from the Interval Scale essential statistic methods can already be

performed. [2, 23]

6

2.1 Questionnaires

2.1.3 Elements

Questionnaires host a wide variety of different element types. Questions, text and media

content are the most fundamental element groups.

The most important and complex element type is the question (also called item). Questions

generate pure data and properly gathered data lead to usable information – the aim of

every survey. A variety of question types exist and therefore many possible categorisations.

A well-documented way to categorise questions is to discriminate between open, closed

and hybrid questions. Open questions allow respondents to express the answer in their

own words. No restrictions – besides the wording of the question itself – are imposed.

Afterwards researchers interpret and categorise these answers. Closed questions define

a static set of replies. Each respondent has to pick one (or more) replies which match

the respondents opinion best. The static sets of replies are a well-known source of errors

because every reply has to be exclusive and the entire set has to cover every possible

answer. In contrast, closed questions can be interpreted fully automatically and therefore

much faster than open questions [14]. A hybrid question is a closed question where one or

more replies are constructed like an open question. These questions are used if the set of

replies does not cover the respondent’s answer. [21]

Another categorisation of questions is based on the tasks of the respondent. Next to the

widespread single choice and multiple choice questions, ranking and distribution questions

exist. Whereas single choice and multiple choice questions simply prompt the respondent

to pick from a set of replies, ranking and distribution questions demand more interaction. In

ranking questions a set of replies has to be ordered (e.g., by the importance or acceptance

for the respondent). Distribution questions instead define a pool of points which can be

distributed to the available replies. The number of points on each reply represents the

importance of the reply to the respondent.

Besides questions, a questionnaire contains a lot of standalone text parts. Text paragraphs

are used to inform (e.g., of the purpose of the survey), to prepare (e.g., explain the next

steps) or to help the respondent (e.g., if the wording of a question is not understood). A

typical questionnaire contains the following text fragments:

• Introduction text (at the beginning of a questionnaire stating the involved organisa-

tions)

• Headlines (introduce new questionnaire parts)

7

2 Fundamentals

• Information text (can bridge to new topics or provide information for the recent topic)

• Help text (provides the respondent with additional information if a question or text is

not fully understood)

• Instructions for the interviewer (regarding the behaviour of the interviewer)

Furthermore, media content and logos are parts of a questionnaire. Logos identify the

involved organisations and media content provide additional information for the respondent.

Media content includes videos, audio files and images. For example a respondent can be

confronted with pictures of lung cancer patients in connection with a question about the

attitude towards smoking. [3, 27]

2.1.4 Construction of a Questionnaire

A questionnaire is a container including elements in a strict defined order. Some of the

elements are visible to the respondent, others are not. Consider example 1 to 4 from

section 2.1.2. If the question from example 1 is answered with ’No’ the questions from

example 2 to 4 are not relevant for the further course of the interview. In fact, in this case

they are contra-productive since they bore respondents and result in a loss of concentration.

[14, 27]

To assure only the relevant elements for a specific group of respondents are shown filter are

an important tool. Filters define paths through a questionnaire by creating dependencies

between a reply and the set of following elements (i.e., shown in figure 2.1). Depending

on the construction of a filtering question several new paths can be created with one filter

question.

Do you smoke?

How many cigarettes
do you smoke a day?

How many years have
you been smoking?

How old are you?

Figure 2.1: Filter including the questions from example 1 - 3.

For questionnaires in paper form a text has to be added to define which element will be the

next one. Software applications instead are able to hide unused elements and show the

8

2.2 Process-aware Workflow

next element directly. Because of dependencies between questions, filter can aggregate

several filter questions to determine the following path.

The typical setup of a questionnaire starts with an introduction. The responsible organisa-

tions and authors are introduced and the topic of the survey is stated. Afterwards, simple

questions, like demographic information, should accustom the respondent to the survey. At

the end simple questions should be used as well to react to the loss of concentration during

long surveys. The complex and more relevant and sensible questions have to be placed

between the start and the end elements. To structure the questionnaire the use of thematic

paragraphs and text passages is recommended, as seen in section 2.1.3. [27]

2.2 Process-aware Workflow

A process describes a sequence of single activities to accomplish a predefined assignment.

The structure of a process features a clear definition of its activities and their dependen-

cies. Complex dependencies between activities require special constructs, like branches

or loops, which manipulate the sequence of activities during runtime. Because a process is

designed once and executed several times, the term process instance is used for a single

run. All parts of a process which can be performed computerised are called a workflow and

can be supported by process-aware information systems (PAIS). The latter offer controls

for the management of process instances (e.g., the assignment of an authorised user to

outstanding activities can be managed fully automatically). Sections 2.2.1 - 2.2.4 provide

an overview of the fundamental parts of a PAIS focusing on the example ADEPT2 [25]. The

ADEPT2 PAIS covers all of the elementary functionality of a PAIS and enables additional

operations for dynamic process evolution and ad-hoc deviations. The approach is based

on a relaxed block-structure. With this structure every branch and every loop has exactly

one entry and one exit node. An entry node represents the start of a new block and an exit

node the corresponding end. Per convention a process has always a static start and exit

node defining its start and termination point.

Though two blocks are allowed to be nested, no two blocks may overlap. Because this fact

limits the expressiveness of ADEPT2 supplementary operations have been added in the

form of synchronisation edges. A synchronisation edge expresses a constraint whereby

the start of an activity depends on the termination of a different activity.

9

2 Fundamentals

Loop Start
Take

customer
order

Outstanding
orders

Item list

Start Loop End
Check

availability
of items

End

Pack and
dispatch

Inform
customer

Pack and
dispatch

True

False

Outstanding
orders

isAvailable

start node

edge

write

data element

XOR split

read

activity

XOR join

end node

loop edge

Figure 2.2: ADEPT2 example for an ordering process.

The further sections will cover the basic workflow constructs of the ADEPT2 PAIS. Figure

2.2 shows a simple ordering process using the ADEPT2 notation. This example process

takes orders from a customer, checks the availability of the requested items and dispatches

them if possible. The example consists of four activities (Take customer order, Check avail-

ability of items, Pack and dispatch and Inform customer). Every activity defines a task or an

entire nested process (called a subprocess) and has different states defining its behaviour

(see section 2.2.1). Solid edges represent the control flow and dashed edges the data

flow. Through data edges an activity can read or write data elements like the Item list in

figure 2.2. The functionality of data elements in ADEPT2 will be discussed in more detail in

section 2.2.2. Branches operate with the boolean logic ’AND’ or ’XOR’. They decide which

activity or activity sequence is executed next (see section 2.2.3). Finally, loops are intro-

duced in section 2.2.4. They define parts of the process, which should be executed more

than once during one process instance, depending on data processed within the instance.

With AristaFlow a software environment for a process-aware information system is available

which is based on the ADEPT workflow technology.

2.2.1 Activities

An activity represents a simple task or an entire subprocess. A simple task can involve

sending or receiving an email, opening or closing a form, reading or writing data, etcetera.

Figure 2.2 describes a process for a mail order company by the use of the four activities

Take customer order, Check availability of items, Pack and dispatch and Inform customer.

After the arrival of a customer order (Take customer order) the availability of the items is

10

2.2 Process-aware Workflow

checked (Check availability of items). Therefore the item list is extracted from the order.

If all items are available, they will be packed and dispatched to the customer (Pack and

dispatch), otherwise the customer is informed that the order can not be handled (Inform

customer). Depending on the companies size, in this example the activity Pack and dis-

patch could be an entire subprocess for the logistics department. For the simplicity it is

handled as a simple task in this case.

Each activity has a list of preconditions. Only if all preconditions are fulfilled the activity is

ready for execution. Since there may be more than one activity ready for execution at a time

and because of the need to provide an overview of the process progress, each activity has

a state. There are the four distinguishable super states waiting, running, terminated and

skipped, which define the general purpose of a set of sub states. The super state waiting

holds the sub states of an activity which waits to be executed. If all preconditions are met,

an activity changes its state from the sub state not activated to the sub state activated. Not

activated represents the initial state of all activities. An authorised user can select one of

the activated activities which changes thus from activated to selected. After being selected

an activity is automatically assigned to a sub state of the super state running. A running

activity performs its task by setting it to the sub state started. If there are any interruptions

during the task the state changes to suspended. If the task of an activity is finished or

aborted the sub states of the super state terminated are used for the activity. For finishing

a task successfully the sub state completed is assigned, for aborting failed. The last super

state contains a special case for conditional branches. If a path is not selected, the attached

activities are unable to run. This is marked by the state skipped.

Dependencies between two activities are defined by the control flow. The control flow is

presented as unilateral control flow edges which link activities, branches and loops. A

link between such two constructs defines a precedence relation. In figure 2.2 the activity

Take customer order has to be terminated before the activity Check availability of items is

activated.

2.2.2 Data Elements

Data elements are global process variables, which enable the data exchange between

activities. The only two data elements in the ordering process example of figure 2.2 are

Item list and isAvailable. Data elements are accessed via data flow edges – in contrast to

11

2 Fundamentals

the control flow edges presented as dashed links. If an activity writes a data element, a

unilateral data flow edge leads from the activity to the data element describing that the data

element is now connected to the activity. Alternatively, reading a data element is defined by

a unilateral data flow edge leading from the data element to the activity. For an activity each

connection to a data element is internal modelled as exactly one input or output parameter.

For example the activity Check availability of items holds one output parameter for the

data element isAvailable and one input parameter for the data element Item list. Besides

primitive data elements, like string, integer, double and boolean, complex data elements

(e.g., arrays) are supported and even user-defined constructs (e.g., SQL ResultSets) are

possible. Regarding the ordering process example (see figure 2.2), the list of items could

be presented as a string (comma-separated item identifiers), as array or as an entirely new

construct. Whereas isAvailable presents a simple boolean.

Constraints ensure the correctness of the data flow by for example checking if a data ele-

ment is written before it is read – except for a data element which is marked as optional.

Furthermore, versions of the data elements are managed by ADEPT2. Every write access

adds a new version to the data element. This can be necessary in many cases, especially

when parallel branches work on the same data elements requiring the same data start

values.

2.2.3 Branches

Branches represent decisions during the runtime of a process instance. Following the

boolean logic, ’XOR’- and ’AND’-splits cover different use cases for branches. ’XOR’-splits

decide which of the following paths should be the only one to be executed. The activities of

the non-selected paths are transferred to the status skipped (as described in section 2.2.1).

For such a decision a data element (see section 2.2.2) is read and based on the dimension,

value ranges are mapped to the following paths. In the ordering process example the simple

boolean value from isAvailable is read to determine which path for the further execution is

chosen. If all items are available the value true is written to the data element isAvailable.

True is mapped to the upper path of the ’XOR’-branch and activates the activity Pack and

dispatch, whereas false activates the activity Inform customer.

12

2.3 Eclipse Rich Client Platform

’AND’-splits divide the path into multiple paths. Activities of all paths are executed indepen-

dently. If the ’XOR’-branch from the ordering process example would be replaced by an

’AND’-branch, the activity Pack and dispatch as well as Inform customer are executed.

2.2.4 Loops

Although processes can be repeated several times, loops are of great concern. In many

cases only parts of a process have to be repeated and the number of iterations is deter-

mined during runtime. As already described in section 2.2, a loop is represented by exactly

one start and one end node. If the end node is activated, the condition for the next loop it-

eration is evaluated. Regarding the ordering process example a loop is useful if a customer

has several orders. Each order will be processed successively. Therefore the fragment of

the process, which is nested in the loop construct, has to be passed for each order. For a

more precise example consider a customer with three orders. The first two orders contain

only available items and are therefore packed and dispatched. The third one misses an

item and hence the customer is informed that the order could not be dispatched probably.

Although the same fragment is run over again, the execution order can be different.

2.3 Eclipse Rich Client Platform

The Eclipse Rich Client Platform (RCP) is a Java1-based development tool for standalone

desktop applications. It provides a framework, which can be freely enriched by functionality

to build a client-side software system. Because of the great basic functionality the term

Rich Client Platform was established.

The Eclipse RCP is based on an OSGi runtime environment to guarantee modularity and

expandability [24]. Every software module is encapsulated in a bundle or in RCP-terms

a plugin. An OSGi runtime manages these plugins through their entire life cycle including

resolving dependencies between plugins. To add supplementary functionality, new plugins

are developed and linked to the OSGi runtime. The Eclipse IDE2 for example is a fully

plugin-based application with a great number of plugins. RCP was originally extracted from

1Java is an object-oriented programming language developed by Sun Microsystems. [34]
2The Eclipse integrated development environment is a collection of tools for computer programmers to develop

software.

13

2 Fundamentals

the Eclipse IDE and is still strongly connected. With every major Eclipse IDE release comes

a RCP release [18]. The RCP content covered in this paper is related to the RCP 4 version.

In the following sections an overview of important basic RCP components is provided (see

section 2.3.1). Based on the plugin structure a set of basic functionality is available reaching

from user interface components over structural models to back-end functionality. In section

2.3.2 the workbench component is described in more detail. With the workbench and its

elements the user interface for the front-end user communication is rendered. The logical

model, the latter is based on, is called the application model and is outlined in section

2.3.3. The application model is a framework to generate a workbench dynamically and

allow changes to the workbench model even at runtime.

2.3.1 RCP Components

Components bundle software functionality in frameworks. In RCP every component, except

the OSGi runtime, is build on plugins. Most of the components consist of a very large

number of plugins.

OSGi Runtime

 Eclipse Modeling
Framework (EMF)

Standard Widget Toolkit (SWT)

JFace

Workbench

Other application plugins

Application Model Dependency Injection Services

Plug-in Development
Environment (PDE)

Figure 2.3: Overview of important RCP components.

14

2.3 Eclipse Rich Client Platform

To separate these amounts of plugins, features allow a logical separation by simply bundling

a list of plugins and other features. The OSGi runtime breaks these features down into

plugins again and starts the life cycle management for each plugin. The life cycle installs

the required plugin and resolves its dependencies. There are two types of dependencies:

The import dependencies define which other plugins are necessary for a plugin to run

correctly. Export dependencies in contrast describe the functionality a plugin offers for other

plugins – in RCP called extension point. After its dependencies are resolved, the plugin is

started and according to its activation policy deferred or directly activated. During its life

cycle the plugin can be stopped and started arbitrary. After the application is terminated it

is uninstalled. [33, 35]

In figure 2.3 the most important RCP components are shown. The access point for user

developed plugins is highlighted in orange. For the development of such plugins the plug-in

development environment (PDE) offer support. These tools are organised in three parts:

The PDE UI part leads the user through several development and deploying steps with

the help of wizards, launchers and editors. With the PDE API Tools the documentation

and maintenance of plugins are supported (especially regarding the JavaDoc). At last the

PDE Build eases the build process of an RCP application by fetching the required files and

properties and combine them in a finished and runnable product. [8]

The Standard Widget Toolkit (SWT) and the JFace toolkit create a uniform user interface

throughout different operating systems by using native user interface widgets. SWT repre-

sents a low-level abstraction layer for the user-interface facilities of the operation system. It

offers the essential functionality to display user interface elements, like buttons, text fields,

canvas, etcetera. JFace appends supplementary registries for images and fonts and pro-

vides frameworks for dialogues, preferences and wizards. Furthermore, the handling with

SWT is simplified with JFace. Concepts as viewers let user interface widgets be supplied

by data from model objects. These model objects are called adapters and offer especially

advantages for more complex data structures like lists, tables or trees. [12]

The Dependency Injection belongs to the programming model of RCP 4. If an object refer-

ences another object via dependency injection, the reference is not resolved until runtime.

Therefore the referenced object is stored at a central place (in RCP the IEclipseContext

class) and injected at the time the referencing object is instantiated. If the referenced ob-

ject is not available (e.g., because it was not created or stored yet) an error occurs and the

15

2 Fundamentals

instantiation of the object fails. In RCP the injected objects are tracked and if they change

they can be automatically re-injected. [35]

Another important component of RCP are services. Services offer controls over several

RCP functionality. Via the IThemeManager service for example the style of the RCP appli-

cation can be changed at runtime. The service is accessed by an IThemeManager object

injected by dependency injection. Further important services are:

• EModelService (programmatic access to the application model)

• ESelectionService (programmatic access to the active selections)

• EPartService (programmatic access to parts)

• ECommandService (programmatic access to commands)

• EHandlerService (programmatic access to handler)

Each of these services refer to the application model and allow different elements of it

to be accessed and manipulated [8]. The elements of the application model and their

construction in a workbench are described in the sections 2.3.2 and 2.3.3 in more detail.

2.3.2 RCP Workbench

The RCP workbench itself only represents an empty shell of the user front-end. To cre-

ate a fully equipped graphical user interface this empty shell is enriched by several RCP

elements. The main control is the workbench window, which represents the visual area

for the containing user interface elements of an RCP application. Windows have several

properties defining their operations (minimising, maximising and closing), settings (visible,

initial size, etcetera) and behaviour (modal, resizeable, etcetera). Windows contain menus,

tool bars or tool controls and parts as shown in figure 2.4.

A menu hosts a set of submenus and simple entries called items. An item holds function-

ality, which is executed whenever it is selected. This item functionality is declared directly

in a class or through commands. With commands a declarative description of the function-

ality is created independently from its implementation. For the concrete implementation a

handler, which holds the uniform resource identifier (URI) of the executable class, is linked

to the command. [24] The benefit of commands and handler lays in a flexible access to

the implementation of functionality. Several commands can point to the same handler and

16

2.3 Eclipse Rich Client Platform

several handler can be linked to the same class. Commands and handler are accessed pro-

grammatically at runtime through the services ECommandService and EHandlerService as

mentioned in section 2.3.1.

Menu

Tool Bar

Part Stack

Part

Part

Figure 2.4: An RCP workbench example including a window with a menu, tool bar, part
stack and three parts.

Tool bars are similar to menus, but avoid nested items. A tool bar displays items as a blank

spot, an image, a text, or an image with text, depending on the information available. To

avoid this predefined behaviour, a tool bar can be replaced or extended by a tool control.

With a tool control a simple canvas is provided, which is filled arbitrary (to display a status

bar for example).

The most important controls are parts. They constitute a plain area, which is filled by user-

created forms and elements. In figure 2.4 the part on the right has no content and part

Tables holds a table with five items. The content of part Trees is unknown. Parts can be ar-

ranged in different ways. A part stack holds several parts as tabs and always displays only

the selected one. The selection is tracked and accessed through the ESelectionService

service. With a PartSashContainer several parts and part stacks are placed next to each

other in a restricted area. Parts are accessible through the EPartService at runtime. The

entire set of parts and part containers displayed in a window is called a perspective. They

therefore define views and are not visible for the user. Because the number of perspectives

is not limited, perspective stacks keep track of all available perspectives.

17

2 Fundamentals

All these workbench elements have a predefined declarative structure and are placed au-

tomatically in the workbench. To add, delete or change a workbench element, RCP allows,

via a graphical editor, access to the workbench model holding the workbench elements. It

is called the application model and is described in the next section.

2.3.3 RCP Application Model

The application model is based on the Eclipse Modeling Framework (EMF). EMF is a frame-

work to build applications grounded on a structured data model. This data model is called

the meta model and is specified in the XML3 Metadata Interchange format (XMI). Based on

this specification, source code is generated and displayed using JFace [8]. In other words

the abstract model is transformed into a concrete implementation.

Figure 2.5: The internal steps for building a workbench.

An example is the RCP application model. The application model allows a user to generate

a fully-equipped workbench with only the help of a declarative graphical editor. With the

graphical editor an abstraction layer for the EMF XMI notation is available. Based on this

user generated model the workbench is rendered. As figure 2.5 shows, the graphical editor

is only the first step, but the only one the user has to handle. Within a tree-structure win-

dows and related perspectives are defined, parts are created and arranged, and properties

are set. Every time the user makes such a change the entire presentation is automatically

transformed into the internal EMF XMI format in the background (see step two in figure

2.5). At startup the meta model is extracted from the XMI file and classes representing the

3The Extensible Markup Language is a declarative language to express hierarchical structured data.

18

2.3 Eclipse Rich Client Platform

workbench elements are generated by the RCP runtime environment (shown in step three).

In step four the generated code is executed and the workbench is displayed as defined in

step one. If extensive changes are made to the application model during runtime, steps

two to four are repeated. With the help of the service EModelService, workbench elements

can be accessed and therefore for example added, deleted and replaced. [8]

Not only the workbench user interface elements itself, but also commands and handler,

are created in the application model. The definition of dependencies between commands,

handler and classes follows a uniform resource identifier pattern, which adds a supple-

mentary separation between classes and all other resources. To refer to a class the prefix

bundleclass:// is used, for resources, like images or fonts the prefix platform://.

Furthermore, bindings and addons are declared in the application model. Bindings define

which key combinations have a special function in a defined context. Addons are global ob-

jects which are managed by the dependency injection framework. With addons additions

and changes to the application are possible in a very early stage. Because addons are

called before the workbench is rendered changes to the user interface are feasible. [35]

19

2 Fundamentals

20

3 Related Work

Questionnaires are a rather inexpensive method to gather a large amount of data in short

time. The analysis of this data is mostly done automatically by statistical software, like R

[22], SAS [26] and SPSS [11]. Even for paper-based questionnaires these tools can be

used by transforming the written answers into a digital representation. Regarding the used

measuring scales (see section 2.1.2), the statistical software is able to provide more or less

complex methods to automatically extract information from the answers given.

Besides the automation of the data analysis, the procedure of data collection itself can be

automated as well. Based on a set of required elements (as described in section 2.1.3)

a questionnaire can be constructed (see section 2.1.4). Software applications, that are

able to create such a questionnaire, are called questionnaire configurators. In the sec-

tions 3.1 to 3.3 an excerpt from the large pool of questionnaire configurators is described

ordered by its application type. The chosen excerpt focuses on providing an overview

of as heterogeneous as possible approaches. In section 3.1 the web-based applications

Generic Questionnaire System and LimeSurvey are depicted, in section 3.2 the desktop

applications SurveyGold and StatPac and in section 3.3 the mobile application Pollcode.

The summary in section 3.4 aggregates the information from section 3.1 to 3.3 in a brief

overview. For descriptions of further configurator environments refer to [13] and [32].

3.1 Web-based Applications

Web-based questionnaire configurators constitute the largest number of configurator appli-

cations. With a thin client application (e.g., a browser) remote server functionality is ac-

cessed and executed. Because this functionality is based on one or more central servers,

thin clients require minimum hardware resources. Moreover, the scalability depends on the

number of accessible servers.

21

3 Related Work

The Generic Questionnaire System (GQS) is one of these web-based questionnaire appli-

cations. It is the predecessor of the configurator prototype originated by this thesis. GQS is

a system consisting of the three components configurator, middleware and client to cover

the entire questionnaire life cycle. With the configurator component questionnaires are

constructed, edited and deleted [28]. To store the created questionnaires centrally, the

middleware component offers interfaces, which can be accessed via the Simple Object

Access Protocol (SOAP) [13, 36]. A stored questionnaire can be downloaded from the

middleware and executed via the client component, which is available as web-based and

mobile applications [17].

Figure 3.1: The QuestionSys questionnaire configurator (see [28]).

The configurator of GQS has a control concept focusing on Drag and Drop events. The

center of the application has a large drop area for several tasks (as shown in figure 3.1),

e.g., the content of a questionnaire is displayed by dragging it into the drop area. To cre-

ate a questionnaire, questions have to be defined and assigned to a group. With Freetext,

Slider, Single Choice and Multiple Choice four question types are provided. Single and mul-

tiple choice questions can be displayed vertical or horizontal, restricting the answer items

to 15 or six respectively. At the creation of a new question an intern template function auto-

matically preallocates redundant parts and properties by using the content of the previous

question. The question groups can be complemented by text elements and page breaks.

With text elements intermediate text fragments are created, whereas page breaks define

22

3.1 Web-based Applications

the point where the recent page ends and a new one is started. If several questionnaires

should be executed successively, they can be bundled in sets. The configurator provides

multi-language support and an export method for statistical tools.

LimeSurvey [6] is a non-profit questionnaire managing application. Based on an open

source approach an initial release was published in 2003. Similar to the GQS configurator

LimeSurvey defines a static set of question types, which can be adjusted individually by

the user. Besides single and multiple choice, free text and slider questions, LimeSurvey

offers a variety of additional types including e.g., question arrays, ranking questions and

file uploads. Questions are also bundled in groups, which are ordered via Drag and Drop

to design the survey. Different is the handling of text elements. LimeSurvey reduces text

elements to a description text for each question group and three global text fragments

defining the description, the welcome and end text for a survey. Page breaks can not be

defined explicitly, but are automatically inserted after every question group.

Figure 3.2: The LimeSurvey questionnaire configurator.

The concept to control the application focuses on a hierarchical tool bar structure. As shown

in figure 3.2, the topmost tool bar holds the administration tools (e.g., user management,

database export and backup, plugin framework, style editor) where a survey can be created

or chosen from a list. If a survey is selected, a survey tool bar is displayed under the

23

3 Related Work

administration tool bar offering functionality for the global survey settings (e.g., ordering the

question groups to a questionnaire or executing a test run). Based on the same principle

the question group and question tool bars are accessed, displaying four tool bars with

over 50 tools. In contrast to the GQS configurator, filtering questions, integrated statistical

tools for data analysis, survey access functionality (e.g., access token generator or sending

invitation emails) and automated error checks are available among other supplementary

functionality.

Although both web-based configurators offer a large number of questionnaire elements,

several restrictions reduce their integration options in a questionnaire. The GQS configura-

tor offers text elements, but only between question groups, whereas LimeSurvey does not

offer free text elements at all. Filtering questions are not provided by GQS, while LimeSur-

vey lacks explicit page breaks. Furthermore, both configurators require a permanent con-

nection to the server. Every change is stored by manipulating the content of a remote

database. As a result, working offline is not possible.

3.2 Desktop Applications

In contrast to web-based applications, desktop applications are designed for rich clients.

The latter provide enough hardware resources to calculate and display the entire application

functionality. Therefore a connection to a remote server is possible, but not required.

With SurveyGold [10] an offline configurator environment is available, which offers addi-

tional online features for publishing or sending surveys and receiving survey results for

subsequent analysis. The application is based on a tree structure, which represents the

hierarchical order of every questionnaire (as shown in figure 3.3). Each leaf defines a

section, which bundles a set of questions. SurveyGold distinguishes between single and

multiple choice question types and offers filter functionality for the former. With filter, re-

sults are mapped to sections (which will be executed immediately after the filter question

is answered) or directly to the end of the questionnaire. The specific order of questions,

besides an introduction text and properties regarding the graphical representation, is de-

fined in sections. A set of sections is assigned to exactly one survey. A survey belongs

to a user-defined folder and determines the list of respondents (e.g., for an email survey)

and which personal user data should be collected. With an additional property page breaks

24

3.2 Desktop Applications

are automatically inserted after every section. Through export functions a survey can be

transformed into a plain text-, a Microsoft Word- or a web-format.

Figure 3.3: The SurveyGold questionnaire configurator.

SurveyGold is a rather simple and limited configurator and stays therefore in direct contrast

to StatPac [30]. With this application the style of a survey is strictly separated from its

content.

Figure 3.4: The StatPac questionnaire configurator.

25

3 Related Work

A so called codebook holds all questions with their answer options (in figure 3.4 a codebook

overview is shown on the right side with the questions Gender and Age). The codebook

can be created by manually adding the questions, by using an existing file or the internal

StatPac editor (represented as a text editor on the left side in figure 3.4). Consider for

example a Microsoft Word document, which contains a fully styled questionnaire. If this

document is saved as rich text file [20], it can be viewed in the graphical StatPac editor.

By highlighting a text fragment in the editor, it can be linked to an empty question in the

codebook. Based on a given codebook StatPac can generate a questionnaire for print

media or web. An internet questionnaire requires a user script, defining its structure and

content. To add the question Gender for example to an internet survey, the command

’Radio Gender’ is defined in the script, whereby the fragment ’Radio’ indicates that radio

buttons are used to provide the answers available. An intermediate text fragment is added

by the command ’Text=’ following the required text.

StatPac, as well as SurveyGold, uses several file types to save and load the user generated

content and therefore provides independent configurator environments. Additional online

features are accessible and mostly correlate with internet surveys.

3.3 Mobile Applications

Mobile applications are designed primarily for devices with small screens and limited hard-

ware resources, like smartphones or tablet pcs. The control concept for these devices is

mostly based on touch gestures including the input of text using an on-screen keyboard.

Although these restrictions lay in contrast to the rich functionality, which should be provided

by a questionnaire configurator, several approaches for creating a questionnaire with mo-

bile devices are available. With Pollcode [4] an approach besides the previous presented

configurators is available. Pollcode does not provide an environment for the construction of

a survey, it just focuses on the generation of a single question instead. A single or multiple

choice question with up to 30 answer options is predefined and configured regarding its

style. The result is the source code of an HTML [38] form, which can be embedded in a

website. Initially in this generated form the answers are forwarded to a pollcode server,

which stores and displays the results. This behaviour can be freely adjusted in the gener-

ated source code.

26

3.4 Summary

The idea to simplify the required functionality for a specific use case of a configurator as far

as possible, matches the limitations for a mobile application. In a wider sense, the reduction

of functionality to a necessary minimum is beneficial for low hardware resources and small

displays. Consider for example a mobile application which is implemented to handle only a

single static questionnaire. Only occurring elements are handled, style changes are limited

and available space is hard-wired to the view of every single element. Even device-specific

optimisations are possible. For example in the medical environment such applications exist

[1].

Although specialised configurators fulfil their goal, extensibility and flexibility are not en-

sured. Moreover, the approach to create an application for every single questionnaire is a

very time-consuming process, which comes at great cost.

3.4 Summary

In this chapter, five different configurator approaches (GQS, LimeSurvey, SurveyGold, Stat-

Pac and Pollcode) are described varying from a minimal question generator to entire ques-

tionnaire life cycle environments. Every approach offers different functionality regarding the

construction, the persistence and the element variety of a survey. In nearly every approach

several elements – reaching from simple text fragments to complex filtering questions –

are available, but limited to specific use cases or conditions. These restrictions are in many

cases related to a strict logical questionnaire model, which does not support any deviations.

Consider for example the GQS configurator in section 3.1, which allows text fragments only

between question groups. If every question requires a description and introduction text,

one group has to be created for every single question – causing an overhead of several

unnecessary question groups.

Furthermore, none of these approaches considered a questionnaire as a sequence of ac-

tivities and therefore as a process. If a questionnaire is executed, the respondent is asked a

number of questions (enriched with text and other elements) in a specific order. If this order

can be mapped to a PAIS (as described in section 2.2), several tasks can be performed

automatically and additional functionality can enrich the questionnaire’s creation and exe-

cution. In chapter 4 such a technical mapping of a questionnaire to a PAIS is discussed.

27

3 Related Work

28

4 Process-aware Questionnaires

In section 2.1 the questionnaire is introduced as a social research method for data col-

lection. With most research focusing on the content of a questionnaire or the order of its

elements, like the ideal wording or the optimal placement of complex and sensitive ques-

tions, the realisation of a flexible and generic questionnaire configurator is not immediately

possible. An approach is required, which maps every possible questionnaire to a universal

model – or in other words, a generic questionnaire model. If this generic model is mapped

to a PAIS, the execution of a questionnaire could be automated and therefore simplified

(based on the idea of [9] and the design approach of [32]).

The goal of this chapter is to define such a generic questionnaire model to map it to a PAIS.

This approach focuses on a maximisation of PAIS support functionality for questionnaires

on the one hand, and on the minimisation of restrictions regarding the structure and content

of questionnaires on the other hand. In section 4.2 a generic questionnaire model is devel-

oped and presented. This model is based on a three-layer architecture defining a layer for

the questionnaire, its questionnaire pages and questionnaire elements. In section 4.3 the

generic model is mapped to a PAIS by linking activities to different layers of the model. The

result is defined as a process-aware questionnaire and depending on the requirements on

the PAIS environment, as described in the next section 4.1.

4.1 Requirements on the PAIS environment

A PAIS is an environment for the entire life cycle of processes. Questionnaires can be han-

dled – as described in more detail in section 4.3 – as a special type of process and therefore

benefit from an expressive PAIS. As a result, the focus of this chapter lays on the integration

of an questionnaire configurator in a PAIS, rather than in the development of a new process

life cycle environment, which is particularly designed to fulfil the needs of questionnaires.

There are two fundamental approaches to combine a PAIS with questionnaire functionality.

29

4 Process-aware Questionnaires

Firstly, an integrated approach, which extends an existing PAIS application by adding sup-

plementary graphical user interfaces and background functionality through a manipulation

of the source code of a PAIS application. Therefore an implementation of the PAIS has to

be available and accessible. This binds the questionnaire configurator directly to the further

development of the PAIS and limits the technical realisation of a configurator. In contrast,

the full functionality is accessible and avoids redundant source code fragments. Consider

for example a PAIS application, which is based on RCP (as described in section 2.3) and

displays the configurator as a single RCP part of the user interface. Although the part

itself can be filled arbitrary (regarding the underlying runtime environment), all comprehen-

sive functionality is predefined by the PAIS application through RCP. Any changes to these

functionality would interfere with existing components and thereby endanger the stability

of the entire system. The flexibility is therefore decreased, but the available functional-

ity increased. Furthermore, the complexity of the PAIS application would be raised and

resulting from that discourage the target group. Because the target group covers mostly

professions without an affinity to PCs (e.g., sociologists, psychologists, doctors, etcetera),

no knowledge concerning processes may be assumed.

The second approach is based on a standalone questionnaire configurator, which accesses

PAIS functionality through predefined interfaces. Through this programmatic interface ac-

cess the complexity of the PAIS can be hidden or reduced to a minimum. A new developed

graphical user interface for example could filter PAIS functionality, which is not required or

present it in a way which is more suitable for the target group. Resulting from that, no PAIS

functionality – besides from those provided by interfaces – is reusable and therefore has to

be explicitly created.

Both approaches require a PAIS, which offers activities, data elements and XOR-branches

(with their related control and data flow), to map the technical questionnaire model, which

is described in section 4.2.

4.2 A Technical View on Generic Questionnaires

Questionnaires consist of a variety of elements reaching from simple information texts to

complex question constructs (as described in section 2.1.3). As seen in the examples from

chapter 3, this set of elements is under steady development and may be extended by new

upcoming needs of the target groups. The GQS configurator for example has four question

30

4.2 A Technical View on Generic Questionnaires

types, whereas LimeSurvey defines over 30. With logical elements, like page breaks or

filter, the structure of elements and their dependencies are controlled. This logical elements

offer comprehensive functionality for the questionnaire elements. Page breaks define which

elements are displayed at once, whereas filter determine the sequence of upcoming pages.

Finally, specific global settings influence the behaviour and functionality of a questionnaire

e.g., by defining its interview mode (performed self-contained or by an interviewer), required

languages, authorised users, etcetera.

Questionnaire

Global
Property

Global
Property

Global
Property

Question Pages

Page

Constraint Set

Global
Property

Figure 4.1: A schematic representation of
a questionnaire as a container
for question pages (question-
naire layer).

Question Page

PropertyPropertyProperty

Question Elements

Element

Style

Static Order

Property

Data

Sensor Sets

Sensor Set

Sensor Set

Sensor Set

Sensor Set

Element

Style

Data

Figure 4.2: A schematic representation
of a questionnaire page as
a container for question ele-
ments (page layer).

To transform these requirements into a generic model, a three-layer architecture is defined,

which consists of a questionnaire layer, a page layer and an element layer. The ques-

tionnaire layer considers the questionnaire as a container. As shown in figure 4.1, every

questionnaire hosts a set of question pages and global properties. The logical page break

construct is expressed as a question page in form of a container for elements, instead of an

31

4 Process-aware Questionnaires

exclusive questionnaire element – equal to a question or a text element. With this abstrac-

tion layer supplementary interfaces for the control flow (represented as an arrow in figure

4.1) of pages are provided. Every control flow edge is enriched by an optional constraint

set, which influences – depending on its evaluation – the flow of upcoming pages. For

example a questionnaire page about ’Smoking’ will be skipped, if the information that the

respondent is a non-smoker is provided through a question on a previous page. To avoid

a limitation of the filter functionality, the constraint set is not restricted in its number of con-

straints. Nevertheless, the occurrence of these constraints is important for the constraint

set. To guarantee an always executable page sequence, constraints have to be evaluable

as soon as the related page is displayed and therefore only allow constraints which are

defined in previous, inevitably executed pages.

Beside the constraint set, global properties (defined in a questionnaire) represent settings

regarding every page of a questionnaire. As an example consider the possibility to enable

or disable the functionality of jumping one page back in a questionnaire. If it is globally

enabled, each page is enriched by an additional button to return to the previous page.

Other examples are the earlier in this section mentioned interview mode, the available

language set and the list of authorised users.

The page layer defines every page as a container similar to the questionnaire container it

is nested in (as shown in figure 4.2). Several properties describe comprehensive settings

or behaviour regarding every element of the page. For example a property could define if

the page is tagged as optional and therefore can be skipped by a respondent during the

survey. As presented in figure 4.2, each element has a data and style content, which can

be freely defined during the process of the questionnaire creation. Consider a text element,

which holds an introduction text in different languages. These languages are defined by

the global property of the questionnaire. A single text item could be saved as a text string

and the entire element content as a list of text strings where each item represents the

introduction text for a specific language. For the representation of the content additional

style information are provided to define the layout, font, font size, color, etcetera. These

style settings could be declared individually or follow the syntax of a standardised language

for style sheets, like the cascading style sheets (CSS [37]). Because a page in a digital

survey is not restricted in its size (as in contrast to pen-and-paper questionnaires with

mostly the DIN A4 format), the page always fits the overall size of its content (or in other

word its nested elements). The order of the elements is strictly determined during the

32

4.3 Integration of Questionnaires in Process-aware Information Systems

construction of the page resulting in an explicit control flow (shown as arrow in figure 4.2).

Every element on a page has therefore an assigned index.

The collection of information is not only provided by the given answers of a respondent

and therefore restricted to questions. The body signals from an respondent confronted with

a particular situation (or question), like gestures, facial expressions and vital signs (e.g.,

pulse), deliver important supplementary information about the attitude to the related topic.

A high blood pressure for example, may indicate tension and taken photos reveal emotions,

which are hard to capture with questions. With this in mind, a sensor framework is inserted

in the technical questionnaire model (see figure 4.2). Each sensor belongs to exactly one

of two sensor types: The discrete sensors collect only data at one point of time (like a photo

camera or a thermometer device), whereas continuous sensors measure data through a

time interval (e.g., pulse measuring devices and video cameras). Every sensor is linked

to the index of an element in a page. Via this index link the same element is able to refer

to different sensors even if it is used many times in the same page. For all sensors linked

to one index (i.e., element of a page), the term sensor set is used (in figure 4.2 shown on

the left side next to the elements). To ensure data privacy, every sensor has an attribute

defining the starting point of a sensor. The explicit starting point requires the respondent

to allow the specific sensor to collect the required data, whereas an implicit starting point

begins with the collection automatically. In the latter the respondent should be informed

about the used sensors in advance of the survey.

4.3 Integration of Questionnaires in Process-aware

Information Systems

With the questionnaire model from section 4.2, every questionnaire consists of three hier-

archical abstraction layers defining different access points to the model. With the question-

naire layer the questionnaire in its entirely is described with its access to global properties

and included question pages. In addition, the page layer determines the structure of pages

with their properties and elements, whereas the details of the element construction are de-

fined in the element layer. Because a PAIS offers performable tasks in form of activities,

only one access point can be mapped to an activity natively at once. With three abstraction

layers, three different approaches to map a questionnaire to a process are possible:

33

4 Process-aware Questionnaires

Else

How old are
you?

Age

Start End

When did
you start
smoking?

Age < 16 AND
Smoker = True

Smoker

Element

Style

Data

Page
Start

Do you
smoke?

Page
End

Page
Start

Page
End

Element

Style

Data

Element

Style

Data

Figure 4.3: Example for a process-aware questionnaire at element level.

The mapping of the element layer to a PAIS is shown in figure 4.3. All questionnaire ele-

ments are directly represented as an activity. If an activity is executed, the involved element

is displayed and able to store user input in data elements. The activity ’How old are you?’ in

figure 4.3 holds a question element, which inquires the respondents age and saves the an-

swer in the data element Age. Each data element can be used as a constraint for branches

and therefore define which path is chosen. With the constraint set of the questionnaire

model an analogy is available. This constraint set is therefore representable through a

group of data elements restricted to a specific value range. In figure 4.3 the data elements

Age and Smoker are combined to the constraint set Age < 16 AND Smoker = TRUE

containing the two constraints Age < 16 and Smoker = TRUE. Only if both constraints

are fulfilled (expressed by the AND operator) the related path (in this case the upper path)

is chosen and within the upcoming activities and their included elements. Because every

element belongs to a question page, the page construct has to be mapped to the PAIS as

well. One possibility to present pages lays in subprocesses. For every page a subprocess

is defined, which holds a sequence of activities equal to the sequence of elements. Another

possibility is provided by special activities determining the start and the end of a page (as

shown in figure 4.3). Both approaches are possible, but contradict the meaning of a ques-

tionnaire page. A page holds a set of elements, which is displayed as a whole and allows

the respondent to decide which elements are considered and manipulated first. This free

element handling is not natively mappable to a PAIS. Further functionality would have to be

added, like bidirectional control flow edges or iterative transactional sequences.

34

4.3 Integration of Questionnaires in Process-aware Information Systems

Else

Page:
Age and
Smoking

Age

Start End

Page:
History of
Smoking

Age < 16 AND
Smoker = True

Question
Page

Question
Page

Smoker

Figure 4.4: Example for a process-aware questionnaire at page level.

A more appropriate approach is based on the mapping of the page layer to a PAIS. As

shown in figure 4.4 every activity represents a question page and therefore an entire set

of elements in a specific order. Each element can write data elements by connecting the

activity, which includes the superior page, with data elements. If the same element oc-

curs several times in the same page, special naming conventions, like using a prefix, which

contains the related index of a page, avoid confusion when executing the questionnaire.

Furthermore, the activities exactly present the behaviour of an entire page. In a ques-

tionnaire always a page in its entirely is displayed and therefore manipulable. Only if the

next (or previous) page is called the recent page is closed. Transferred to the activities,

the manipulation of a page is a running task which is terminated by the respondent or in

PAIS terms the authorised user. The sequence of pages is defined by branches and their

constraint sets (identical to the element layer approach).

The third approach captures all questionnaire data in a single construct and links it to an

activity. Therefore the entire process only consists of this single activity. Branches, data

elements and further activities are expendable, because the page sequence is defined in

the questionnaire construct and not with the use of the PAIS. As a result, the use of a PAIS

is expendable in this approach.

35

4 Process-aware Questionnaires

4.3.1 Constraints within Questionnaires

All three approaches to map the generic questionnaire model to a PAIS require constraint

sets to determine the sequence of displayed pages. The first two approaches transfer the

constraint sets to the data flow of a PAIS, the third one defines it internally. To avoid the

complexity of the explicit data flow, an automation of the data element creation, with its cor-

responding data edges, is necessary. Constraints are defined and internally transformed

into a hidden PAIS data flow. Because only elements, which collect user input – in a ques-

tionnaire only elements of the type question – can influence the sequence of upcoming

pages and therefore define analysable constraints, the four question categories – single

choice, multiple choice, ranking and distribution (as seen in section 2.1.3) – must be cre-

ated by fulfilling the following regular expression:

constraint := < answer items > (< answer data type >) (< result data type >)∗
The construct < answer items > selects the answer items (at least one) for which the same

comparative operators are applied. The latter are defined via the expression (< answer

data type >), which is required for free user inputs and distinguishes between text strings

and numbers. With numbers the comparative operators <, ≤, =, 6=, ≥, > are available,

whereby text strings focuses on search operators, like CONTAINS. The data type should

be defined within the question’s construction and therefore automatically resolved into the

corresponding operators by the configurator. With the last fragment (< result data type >)∗
additional manipulations of the answer items are determined. For example the question

type ’ranking question’ allows the user to arrange the single answer items to a preferred

order. An user-defined order is an user input where every answer item is attached to a

new index and therefore to a number. As an example consider a ranking question where

a respondent should order the four choices Teacher, Policeman, Politician and Reporter

by appreciation. A fifth choice is a free text field called Other allowing the respondent to

enter and order a fifth profession. Consider an constraint to filter answers, which had cho-

sen the fifth free text answer item. Furthermore, the entered profession should contain the

word Fireman and take the first position in the order chosen by the respondent. The cor-

responding constraint is described by {{5. Other}} CONTAINS ′Fireman′ = 1. For a

single choice question where a respondent can only choose between static text strings

only the < answer items > fragment is required to form constraints. Furthermore, the

< answer items > expression only contains a single answer item – the item selected by

the respondent.

36

4.3 Integration of Questionnaires in Process-aware Information Systems

All in all a constraint is reducible to a selection of answer items for which a set of operators

define a value or a value range. The data types can therefore be created (inclusive reading

and writing edges) fully automatically.

37

4 Process-aware Questionnaires

38

5 Architecture and Implementation

With a generic questionnaire model and an approach to integrate PAIS functionality into

such questionnaires (as described in chapter 4), the basis for a standalone process-aware

questionnaire configurator is created. Such a configurator requires additional features to

handle the complexity of the supplementary PAIS support in a user-friendly way. Further-

more, the generic questionnaire model (as shown in section 4.2) defines several extension

points for a flexible expandability of configurators. In this chapter an architecture is pre-

sented, which lists and structures required components including their dependencies, to

pave the way for a concrete implementation of a process-aware questionnaire configurator.

To validate this architecture an implemented prototype is developed as part of this thesis

and grants an insight into a concrete implementation based on RCP.

The first step of implementing a configurator is the listing of requirements and their pack-

aging into different software components. Section 5.1 provides an overview of necessary

core components reaching from front-end to persistence modules. A closer look at the

persistence components is given in section 5.2. To avoid restrictions by only providing ei-

ther online or offline functionality, this persistence components describe a hybrid approach,

which offers both functionalities. These components are structured in section 5.3 by using

well-known design patterns, like the Presentation-Abstraction-Control (PAC) pattern, which

divides the graphical representation from the data model on several hierarchical layers. In

section 5.4 the Rich Client Platform (see section 2.3) is integrated into the architecture of

the process-aware configurator to benefit from available functionality for common program-

ming tasks. The results of this chapter are provided as an overview in section 5.5.

5.1 Core Components

The components of a process-aware questionnaire configurator constitute three categories:

The user interface components contain the visual representation and therefore focus on

39

5 Architecture and Implementation

the user communication with the application. In contrast, background components deter-

mine the data processing independently from any user input. A special kind of background

components are the persistence components, which constitute the third category and are

described in section 5.2. The latter aim at extending the storage of processed input data

over the runtime of the application. In figure 5.1 an overview of all components is provided.

Workspace
Management

Questionnaire
Management

Element Builder
Questionnaire

Builder
Preview

Dialogue Handler

Status Information Updater

Version Control

Perspective Handler

Element Placer Connector CreatorProtocol Graph Operations

Configuration File
Handler

Object Wrapper
File Format IO

Handler

Multi-language Support

Dialogues

Figure 5.1: Core components of the architecture of a process-aware questionnaire config-
urator.

5.1.1 User Interface Components

As shown in figure 5.1 there are six user interface components: Workspace Management,

Questionnaire Management, Element Builder, Questionnaire Builder, Preview and Dia-

logues. The Workspace Management component provides a graphical management layer

for a set of questionnaires. This management layer is expressed via workspaces, which are

logical containers for the categorisation and ordering of questionnaires. Each workspace

has a title and a description offering the possibility to provide information about the included

questionnaires, their purposes and aims. Furthermore, functionality to share a workspace

or forward it to other users is provided by an explicit management of rights. Every user man-

40

5.1 Core Components

ages for all self-created workspaces a set of authorised users and their regarding rights.

Authorised users obtain the right to read or modify the content of a workspace, whereas

the owner has the supplementary right to delete it and manage the set of authorised users.

The questionnaires within a workspace are handled by the Questionnaire Management

component. Besides the finalised and executable questionnaires, corresponding ques-

tionnaire pages and elements, configuration settings, comprehensive properties and the

supported languages are displayed. The latter determine the languages in which the fin-

ished questionnaire can be executed. Because the languages affect all corresponding

questionnaire elements with a multi-language part, the use of a specific input mask is ben-

eficial. Instead of manipulating every related element with a multi-language part, only the

input mask changes when the supported languages of a questionnaire are varied. If a

multi-language element is modified, a form, which includes the input mask, is generated,

displayed and manipulatable through a user interface. With the input mask for languages

navigation instruments are defined as well. Labels of buttons to navigate to the next (or

previous) question page for example are required in the chosen language. This configura-

tion of navigation instruments is defined in the configuration settings. At last the properties

represent the global properties of the generic questionnaire model as seen in section 4.2.

Figure 5.2: Excerpt of the element builder environment of a process-aware questionnaire
configurator prototype.

With the Element Builder the life cycle of questionnaire pages and elements is handled.

Figure 5.2 shows an excerpt of the Element Builder implemented in the configurator proto-

type. New pages and elements (in figure 5.2 represented with the blue elements on the left)

41

5 Architecture and Implementation

can be created, whereas existing ones can be modified or deleted (in figure 5.2 possible

through the editor view on the right). Because pages represent a container for elements (in

reference to the generic model in section 4.2) on the one hand, but share much function-

ality with elements on the other hand, the term complex elements is used. Furthermore,

the abstraction of the page as a container offers new complex elements to be derived from

a page. For an example consider a standardised instrument (described in section 2.1.1).

Because the occurrence and order of specific elements is predefined in an instrument,

it represents a page, which is restricted in its allowed modification functionality. Regular

questionnaire elements in contrast are called simple elements. Simple elements contain

text elements (e.g., headlines), questions (e.g., single choice questions) and multimedia

content (e.g., images). With a template for simple as well as complex elements extension

points are available for upcoming self-created elements.

Figure 5.3: Excerpt of the modelling environment of a process-aware questionnaire config-
urator prototype.

The Questionnaire Builder component (as shown in figure 5.3) is the part of the configu-

rator which uses PAIS functionality to create a process-aware questionnaire. A modelling

approach (following the design approach of [32]) provides an environment where pages

(and its derivations) are combined to an executable questionnaire. Constraint sets are de-

finable via modelling constructs called filters. In figure 5.3 the available pages for creating

a questionnaire are shown on the right, whereas the modelling area for the questionnaire

42

5.1 Core Components

is displayed on the left side. The resulting graph reflects the generic questionnaire model

(from section 4.2) and is automatically transformed into the required PAIS format by using

interfaces provided by the PAIS (as described in section 4.3).

With the Preview component an overview of a selected simple or complex element is pro-

vided. Especially questions with a large number of answer items or a text in several lan-

guages benefit from a fast preview (during the creation of the element) to check, if the

created element is complete. Moreover, decisions regarding the style, like the font or font

size, require an immediate feedback for the user.

Feedback of the system is provided by dialogues as well. The Dialogue component there-

fore offers a collection of necessary dialogues and dialogue templates. Furthermore, status

and tool bars provide relevant information throughout the entire application.

All in all the user interface components are designed to guide the user in four steps through

the creation of a questionnaire. First of all a workspace, which defines the general topic,

is set up with the Workspace Management component. Afterwards a new questionnaire is

created in this workspace with the use of the Questionnaire Management component. Re-

quired languages are adjusted, navigation instruments are labelled and general information

are entered. Then, elements and pages are created, which should occur in the new ques-

tionnaire by using the Element Builder. Finally, this pages and elements are assembled to

an executable questionnaire with the functionality provided by the Questionnaire Builder.

Each of these components require background components to process and store the data

of the user input, which are therefore described in section 5.1.2.

5.1.2 Background Components

The Dialogue Handler, Version Control, Perspective Handler, Protocol, Element Placer,

Connector Creator, Graph Operations, Status Information Updater, Multi-language Support

component and the persistence components belong to the background components (as

shown in figure 5.1).

The Dialogue Handler component is responsible for the management of dialogues (see

the Dialogue component in section 5.1.1). Because of the wide variety of dialogues, the

Dialogue Handler provides comprehensive functionality regarding the creation of neces-

sary objects (e.g., another window), for calculations for the required dialogue position (e.g.,

43

5 Architecture and Implementation

window-centred or predefined) and for displaying several dialogues at once. Even func-

tionality affecting the visual appearance, like the use of transparency, or behaviour of com-

mon dialogue parts, like the initial focus, are adjustable through such a dialogue handler.

Because the Dialogue Handler provides only support functionality for user interface com-

ponents and is not part of any user interactions, it belongs to the category of background

components.

With a Version Control component different versions of an object are tracked and saved.

A simple questionnaire element for example can be modified several times and included

into several finalised questionnaires. If a questionnaire has reached the state finalised, it

is put into practice and therefore going to be executed by respondents. In this state the

questionnaire is immutable to avoid divergent and not comparable answers. Nevertheless,

parts of the questionnaires are required in other questionnaires as well and may demand

adjustments. To modify an element, which is nested into a finalised questionnaire, versions

are needed. With versions different editing states of an object are available at the same

time. Versions are immutable to provide data integrity, but offer the functionality to load the

versions content, manipulate it and save it as a new version. Therefore, not the entire object

with all its versions is referenced, but a single version of the object. Besides the simple

elements, complex elements, questionnaires and workspaces require a version control as

well and resulting from that, every user interface component except Dialogues.

The Perspective Handler component provides functionality for user interface components

as well. Every window consists of a variety of view areas with distinct forms and input pos-

sibilities for user interaction. Because the overview clarity suffers under a growing number

of view areas, sets of view areas, which are shown at once, are bundled in perspectives.

The latter require additional functionality to administrate the nested view areas. For ex-

ample methods to initialise and dispose view areas are linked to a call to change the re-

cent perspective. With a Perspective Handler comprehensive perspective mechanisms are

therefore available.

Figure 5.4: Status bar of a process-aware questionnaire configurator prototype.

44

5.1 Core Components

To help the user to keep track of relevant information (e.g., entered data through different

perspective changes) a status bar is beneficial (as shown in figure 5.4). The functionality to

feed this data from everywhere within the application is provided by the Status Information

Updater component. An object registers itself to one of the available data sources and is in-

formed every time the state of this data source changes – such an object is therefore called

a receiver. In contrast, objects are able to take over the functionality to trigger changes by

registering themselves as a sender. With the sender functionality tool bars are feasible in

addition to status bars.

Another component to ease usability is the Protocol. A protocol saves actions from a user

and automatically creates reverse actions to undo the origin ones. Therefore, an intern

called method is mapped to a set of methods required to reset the functionality of the

initial method call. With every undo call the set of undo methods for an action is executed

successively. As a result, the user is able to undo or redo taken actions, like inserting a

question page into a questionnaire.

The Element Placer, Connector Creator and Graph Operations components are especially

relevant for the graphical modelling environment of the Questionnaire Builder component.

Figure 5.3 shows an excerpt from the modelling environment of a process-aware ques-

tionnaire prototype (based on the design approach of [32]). On the right of figure 5.3 the

available (and categorised) elements are located and placed – depending on the available

space of the right view area – with the Element Placer component. The latter places a set

of elements as space-saving as possible on a defined area. On the left side of figure 5.3

the modelling of a questionnaire is shown. Elements are inserted into the questionnaire by

simply dragging them on an available edge. With every insertion (and deletion), edges are

adjusted (and created) automatically via the Connector Creator component. After the Ele-

ment Placer component positions the questionnaire elements on the modelling view area

the Connector Creator calculates paths between each linked element pair. Those paths

are not allowed to overlap to avoid ambivalent interpretations. At last the Graph Operations

component offers direct access to the modelling graph and a set of predefined operations,

like setting a comprehensive zoom level or searching for a specific element.

With the Multi-language support component a template is defined, which offers common

functionality to handle a multi-language part. Methods to integrate a language mask are

covered by this component as well.

45

5 Architecture and Implementation

Finally, the persistence components Object Wrapper, File Format IO Handler and Configu-

ration File Handler provide functionality to save the processed data on disk and optional on

a remote server. Section 5.2 gives a more detailed view on the structure and mechanisms

of the persistence components.

5.2 Persistence

The persistence layer constitutes an Object Wrapper, File Format IO Handler and Config-

uration File Handler component. These components provide functionality to persist pro-

cessed data provided by user input through user interface components. This application

data can be stored as local files and on a remote server. Because both approaches have

different advantages, a hybrid approach is beneficial and described in this section. An off-

line storage saves data in specific file formats in local directories. As a result, the local

files are accessible and manageable by the user and can be used for backups or to share

them with other users (if not restricted by the file format or an encrypted file content). Fur-

thermore, the required data is directly available and does not depend on the bandwidth,

workload and availability of a remote server. On the other side, online storage eases the

management of files by triggering automatic backups or holding the logic of the data struc-

ture, and provide supplementary functionality to work on the same data set from different

places and devices.

Figure 5.5 shows the architecture of a hybrid approach based on the persistence compo-

nents, which store files locally as well as remotely. The Application Logic is the basis by

processing input data and displaying output data. This in- and output data is available in

form of objects and allows logical sets of data to be encapsulated into a single construct.

For example all relevant information of a specific workspace, like a title, description, or a set

of authorised user, are bundled in a single workspace object and are manipulated through

the user interface component Workspace Management. Because these objects are struc-

tured based on a specific programming language, they have to be adjusted to match a

different structure on a remote server. The latter can be a direct database for example,

communicating via a database connector in form of SQL queries, (see section 5.2.1) or a

web service (as described in section 5.2.2), which uses SOAP or HTTP messages with an

XML or JSON content for the communication (e.g., REST [5]). To provide application logic

independently from the data structure of a remote server, a wrapper layer is provided by

46

5.2 Persistence

the Object Wrapper component (as shown in figure 5.5). The functionality to store the data

offline is provided by the File Format IO Handler component, which uses the already exist-

ing wrapper to store the objects locally in the same way as the remote server (or additional

wrappers for a different data structure). Finally, the Configuration File Handler component

manages (independently structured) application files to change variables of the application

runtime environment or to manage user preferences.

Wrapper Layer

Workspace
Wrapper

Questionnaire
Wrapper

Page
Wrapper

Instrument
Wrapper

File Format IO Handler

Application Objects

Workspace
Object

Questionnaire
Object

Page
Object

Instrument
Object

Application Logic

Remote Files Local Files

Configuration File
Handler

Local
Configuration Files

Figure 5.5: Architecture of the persistence components of a process-aware questionnaire
configurator prototype.

5.2.1 Direct Database Connection

To connect a questionnaire configurator to a database, connectivity drivers are required,

providing methods for the direct access to stored data. These methods are called queries

and exist in different forms throughout relational, hierarchical, network databases and many

more. A query reads or writes data parts from an underlying database. These data parts

are sets of single variables, which reflect a data type respectively, like an integer or a string.

47

5 Architecture and Implementation

A wrapper therefore has to assemble an object (e.g., a workspace object) by firstly exe-

cuting queries until all required variables are received and finally assigning these variables

to the right object variables. On the other hand, a given object, which needs to be stored

in a remote database, has to be disassembled into single queries. Because the integrity

of the transmission is depending on the successful executing of every single query for an

object, a transactional content has to be available either by the server or by the application.

Furthermore, the database structure may be different, but nevertheless has to cover the

offered functionality of the application. If for example a workspace offers the manipulation

of a description text, an related string variable for the description has to be available in the

database.

Because not every manipulated object requires to be stored immediately on the remote

database, the wrapper layer (as seen in figure 5.5) has to provide a queue. A queue holds

track of every manipulated object and transfers finalised objects to the database. This

transmission can depend on the state change of an object or is triggered by a timer. To

keep track of the states, all objects in the queue are tagged with a state, like LOCAL_ONLY

(for an object which is temporarily stored locally), READY_FOR_TRANSMISSION (for an

object ready to be stored in the database), IN_WORK (for an object which is in use and

therefore is not stored yet), etcetera. With the termination of the application, this states and

their related objects have to be stored. The Configuration File Handler component therefore

saves this mapping in an extra file, which is read at every application start.

The offline storage of the objects uses the same data structure as on the server to avoid

redundant source code. The definition which content is stored in a single file is arbitrary, but

to ensure a clear file system it is beneficial to nest the content of every workspace into an

own file. This file has to match the structure on the remote server, for example a Structured

Query Language Data file for a SQL database.

To ensure data integrity between the offline and online data set, a priority of significance

needs to be defined. At the start of the application all local data is read. The online data

requires a login and through a possible loss of connection it does not act as a continuously

data source. Because a large number of users can work on a validated online data set, this

data has the highest significance and therefore is always considered as correct if it conflicts

with a local data set. For example the manipulated offline data by a user can therefore not

replace valid data stored on the remote server. The local data is always adjusted to the

48

5.2 Persistence

online data set. To avoid the loss of offline work, the Version Control component offers a

merge functionality to create new versions based upon old data sets.

5.2.2 Web Services

Web services provide interfaces described in a machine-processable format. Every inter-

face is accessible by an URI via messages of a specific protocol (e.g., HTTP). The content

of these messages is mostly defined in XML and therefore allows more complex requests

than a query (as described in section 5.2.1). With XML the structure and content of an

entire object can be transferred at once. The interfaces of a web service are therefore able

to offer entire objects for transmission. Resulting from that, every wrapper of the Object

Wrapper component only requires the mapping from a single XML object to a single appli-

cation object. Because XML is a widespread and well documented descriptive language,

several software libraries are available which cover the functionality to transform an object

into an XML representation and vice versa. Besides XML further formats, like the Java

Script Object Notation (JSON) are available. Moreover, such formats offer comprehensive

functionality to read and write local representations, which reduces the functionality the File

Format IO Handler component needs to provide.

5.2.3 Summary

With the management of online data on the one hand and local data on the other hand,

the complexity to guarantee data integrity increases. A hybrid approach to take advantage

by combining the online and offline functionality requires a strict defined interaction pattern

to coordinate the data access. Furthermore, the different technologies to store data sets

remotely demand the responsible components to allow a flexible adaption. With a wrapper

layer this adaption is provided and offers supplementary functionality, like queueing and

state assignments. To ensure a validated data set, the online data is weighted higher than

the local files and therefore avoid manually data manipulation. Nevertheless, strong tools

and libraries for web services are available to provide support functionality for this hybrid

approach.

49

5 Architecture and Implementation

5.3 Design Patterns

”Design patterns are basically design tools to improve existing code. [...] They

standardize common programming tasks into recognizable forms, giving your

projects better cohesiveness.“ (Lasater, 2010) [7]

With design patterns components and component parts are structured (as mentioned in the

quote) in a standardised way. This standardisation validates the structure and reduces the

introductory period. In this section the well-known Presentation Abstraction Control (PAC),

Observer and Factory Pattern are discussed regarding their advantages for a process-

aware questionnaire configurator.

The PAC pattern separates the functional core of an application from the graphical repre-

sentation. With a set of hierarchic organised agents a multi-layer architecture is created.

Every agent represents a part of the application logic and defines a presentation, abstrac-

tion and control component. The presentation component displays data in a graphical user

interface and therefore manages the user in- and output. Displayed data is located in the

abstraction component in form of a structured data model. Via the control component the

presentation is connected with the abstraction and supplementary functionality for the com-

munication with other agents is provided. There are three types of agents: The top-level

agent constitutes the core functionality and therefore mostly manages no user interface

parts. Only one single top-level agent is allowed, which defines the root layer of the ar-

chitecture. Intermediate agents constitute the underlying layers (at least one) by defining

dependencies between agents of any type. The bottom layer is defined by bottom agents,

which provide encapsulated concepts for user interaction.

The result is an architecture where application parts are continuously subdivided into smaller

parts with every hierarchical layer. Especially complex applications with a lot of user inter-

action benefit from the possibility to encapsulate semantic parts independent from compre-

hensive functionality. Consider for example the excerpt of the questionnaire management

in figure 5.6. A questionnaire hosts several editable information and settings (as described

in section 5.1), which are encapsulated into the three different semantic parts Description

Dialogue, Dependency Dialogue and Operations Dialogue. A Description Dialogue holds

all the descriptive information about a questionnaire, whereas the Dependency Dialogue

determines the dependencies to other questionnaires (and an additional setting to lock the

questionnaire). With the Operations Dialogue comprehensive functionality for the manage-

50

5.3 Design Patterns

ment of a single questionnaire is provided. Each of these parts concentrate on different

aspects of a questionnaire and therefore invoke different functionality. Because all parts

belong to the same superior construct – a questionnaire – they are displayed and handled

as a unit in form of a Questionnaire Dialogue. If for example the height of the Description

Dialogue exceeds the overall height of the Questionnaire Dialogue (e.g., by adding new

supported languages), the size of the superior Questionnaire Dialogue is extended. Be-

cause the overview of questionnaires contains mostly more than one questionnaire, the

change of size affects following questionnaires. As a result, the locations of the latter has

to be recalculated.

Overview of Questionnaires

Questionnaire Dialogue

Description Dialogue Dependency Dialogue Operations Dialogue

Figure 5.6: Excerpt of the questionnaire management of a process-aware questionnaire
configurator prototype.

Figure 5.7 shows the transformation of the questionnaire management from figure 5.6 to

the multi-agent structure defined by the PAC pattern. The top-level agent is the container

of questionnaires which offers no user interfaces, but comprehensive functionality to posi-

tion the questionnaire dialogues in a specific way (e.g., with a predefined margin to avoid

51

5 Architecture and Implementation

overlappings). A questionnaire dialogue is an intermediate-level agent, which contains a

description, dependency and operations dialogue in form of a dependency to a bottom-layer

agent respectively. The intermediate agent provides functionality to combine the bottom-

layer agents in a uniform construct and offers additional user interface aspects (e.g., a

border which separates between active and non-active questionnaires). With three bottom-

layer agents different user in- and outputs are provided by independent user interfaces. The

communication to inferior layers is expressed as function call, whereas events define the

communication to superior layers (as shown in figure 5.7). The architecture defined by the

PAC pattern is expandable to all user interface components mentioned in section 5.1.

Top-level agent
Overview of Questionnaires

Intermediate-level agent
Questionnaire Dialogue

Bottom-level agent
Description Dialogue

Bottom-level agent
Dependency Dialogue

Bottom-level agent
Operations Dialogue

Function call Function call Function call

Function call Event

Event EventEvent

Figure 5.7: The hierarchical agent structure of the PAC pattern for the questionnaire man-
agment in figure 5.6.

The Observer pattern is a behavioural pattern, which focuses on unilateral dependencies

between components. One component is called the subject and states the object on which

the observer components depend on. Every time the subject changes, all registered ob-

servers are notified. This behaviour is especially relevant if data needs to be displayed or

updated in real time. In contrast to automatic polling, the observers are independent from

timers, which pushes the next subject call and therefore require less hardware resources.

A common example is a status bar (see figure 5.4), which displays information, which are

spread over different components. Every time a component changes its information (e.g.,

through a user input), the status bar requires the new state as fast as possible to keep the

52

5.4 Usage of the Rich Client Platform

user up-to-date. This is exactly the task of the Status Information Updater component (de-

scribed in section 5.1.2) – but independently from a user interface – which therefore benefit

from the subject-observer structure.

With a Factory pattern the creation of application constructs, like questionnaire elements

and pages, is managed by factories. The latter encapsulate the creating logic of an con-

struct – also called product – in a central location. Resulting from that, initialisation pro-

cedures are not spread across the application and can therefore be adjusted faster and

less error-prone. Moreover, supplementary management functionality is integrable. A fac-

tory can operate as a repository by saving the references to every created product and

with that perform comprehensive tasks. Consider for example a factory which encapsu-

lates the creating logic of every questionnaire element. Every time an element is created a

reference is saved in this element factory. If the user requires an overview of the created

elements since application start (e.g., to validate that every required element has been cre-

ated successfully), the element factory can provide a list of created elements by analysing

the saved references and extracting the necessary data. In the developed configurator

prototype product repositories are available in the persistence components. Every created

element needs to be stored and therefore referenced by the persistence module.

5.4 Usage of the Rich Client Platform

The Rich Client Platform (as described in section 2.3) supports JAVA application developers

by offering functionality for common tasks. With the RCP workbench and the RCP applica-

tion model (see section 2.3.2 and 2.3.3) a window management tool is provided for graph-

ical software applications. The application is divided into windows defining their nested

view areas. Several constructs to manage these view areas, especially RCP perspectives,

RCP part stacks and RCP parts (see section 2.3.3), can be declared and accessed through

specific services at runtime.

In section 5.3 the PAC pattern is described to present a structure for interactive software

systems. Figure 5.8 shows an approach to integrate the RCP application model to the PAC

structure of a process-aware questionnaire configurator (as shown in figure 5.7). Basically

every user interface component (in figure 5.8 the Questionnaires Management component

is used exemplary) is packed into an RCP part. Each of these RCP parts is then linked

to an RCP perspective, which is anon linked to an RCP window. With this structure the

53

5 Architecture and Implementation

arrangement of all view areas provided by the user interface components, is defined in a

central and independent place.

PAC pattern

RCP Application Model

Intermediate-level agent
Overview of Questionnaires

Intermediate-level agent
Questionnaire Dialogue

Bottom-level agent
Description Dialogue

Bottom-level agent
Dependency Dialogue

Bottom-level agent
Operations Dialogue

Function call Function call Function call

Function call Event

Event EventEvent

Intermediate-level agent
RCP Part

Intermediate-level agent
RCP Perspective

Intermediate-level agent
RCP Window

Top-level agent
RCP Application

RCP Service

Figure 5.8: The hierarchical agent structure of the PAC pattern for the questionnaire man-
agment using RCP.

Figure 5.8 shows an example of an RCP application, which displays the user interface com-

ponent Questionnaire Management (as seen in figure 5.6). Firstly, an RCP window has to

be defined including a related RCP perspective with one RCP part. Secondly, the size is

defined by declaring an RCP window size and an RCP part size (which is a relative value

to the size of the RCP window). The arrangement of view areas is dispensable with only

one RCP part. Finally, the RCP part is mapped to the Questionnaire Management compo-

nent by providing a view area (in RCP through an object called Composite), which can be

filled arbitrary. Because RCP parts provide comprehensive functionality for their content,

they interact – transferred to the PAC pattern – like a layer of intermediate agents. Nested

54

5.4 Usage of the Rich Client Platform

components are able to access the superior RCP part with the available RCP services –

in this case the EPartService (as described in section 2.3.1 and 2.3.3). Every RCP part is

nested directly or through other containers (e.g., an RCP PartStack or RCP PartSashCon-

tainer) into an RCP perspective. The latter offers additional comprehensive functionality for

the arrangement of RCP parts and therefore function as an independent intermediate-layer

of agents as well. This repeats until the root of the RCP application model (in form of a

single RCP application construct, which holds references of all RCP windows) is reached.

In figure 5.8 the corresponding PAC pattern is shown. If a view area for another user in-

terface component should be displayed, a new RCP part is created, which provides then

again a view area for this component. Afterwards the RCP part is connected to the RCP

perspective, which is adjusted to arrange both RCP parts.

Because most components depend on the functionality of other components a central

mechanism to manage dependencies is required. For this purpose, RCP offers depen-

dency injection and provides a central storage place for registered components with the

IEclipseContext (see section 2.3.1). Because the order in which the IEclipseContext is ac-

cessed is important (dependencies can only be resolved if the required components are

registered first), it is beneficial to fill the IEclipseContext at the start of the application with

all required components. Especially the availability of the background components for the

user interface components is of great concern. Because the order of access to user inter-

face components can lay in the hands of the user, an ad-hoc component registration can

increase the complexity of the application and cause redundant registration calls.

A core requirement of most RCP applications is to offer extensibility. With the flexible and

on several layers extensible generic questionnaire model (as described in section 4.2) this

is of particular concern (e.g., a new questionnaire element has to be included). Because

the entire RCP is based on an OSGi environment, extensibility is offered through plugins.

Every plugin bundles a set of functionality and makes it available through extension points.

Therefore the configurator can be extended by simply including and accessing required plu-

gins. Moreover, functionality can be developed and used independently from a specific ap-

plication. To access plugins programmatically, RCP provides an add-on mechanism, which

allows the manipulation of plugins and their dependencies before the application starts.

Therefore event handler are connected to different states of the application’s user interface

life cycle (e.g., APP_STARTUP_COMPLETE). Consider a configurator which holds all rel-

evant text labels of the application in a single plugin for each language. Resulting from

that, new languages can be dynamically added by developing new language plugins. All

55

5 Architecture and Implementation

these language plugins are read before the user interface is generated and therefore are

available at application start.

Another important feature of the RCP is portability. Every RCP functionality supports the

operating systems Linux, Apple MacOSX, Oracle Solaris and Microsoft Windows natively.

For special configuration settings each supported operation system can be configured in-

dividually by defining different launcher arguments and plugin start levels for example. Fur-

thermore, tools to create an executable application based on the source code are provided.

Application icons, a runnable executable and a launcher configuration file are generated

automatically. No installation is required, the application is instantly executable and even

brings a chosen runtime environment to decrease the complexity for the user and ease

access to a configurator environment.

5.5 Summary

In this chapter an architecture is presented, which covers all requirements for a process-

aware questionnaire configurator. First of all, fundamental requirements are collected and

bundled logically into components (see section 5.1). A set of these components is re-

sponsible for the user in- and output and define a user guidance through the questionnaire

creation process. Questionnaires are bundled into supplementary workspaces to provide

logical collections and nest simple and complex elements, which are put together to a fi-

nalised questionnaire. To get a better impression of the components, excerpts from an

implemented configurator are additionally provided. Section 5.2 analyses the storage of

data in more detail. To restrict the user as little as possible, the advantages of a remote

server and local files to save the data are combined in a hybrid approach. Furthermore,

design patterns (like the Presentation Abstraction Control pattern), which provide a better

cohesiveness and code clarity, are discussed in section 5.3. These are complemented

by the available functionality provided by RCP for common programming tasks, in partic-

ular considering a configurator environment (e.g., portability or extensibility). This chapter

therefore paves the way for a concrete and complete configurator implementation.

56

6 Conclusion

Questionnaires are a fast method to collect data in empiric research. Much study in the

recent years focused on the versatile aspects of questionnaires reaching from wording [27]

over graphical representations [21] to element structures [2, 14]. With advancing online

connectivity and mobile accessibility, technical aspects of questionnaires are of growing in-

terest. Additional features to ease the process of managing a questionnaire, like distributing

questionnaires via email, making them accessible through the internet, or working on them

collaboratively from different places, are provided by software applications. A large number

of these questionnaire configurator applications are available (six of them are described

in chapter 3) with a different scope of functionality. None of these configurators consider

a questionnaire as a process and therefore uses the rich functionality of process-aware

information systems (PAIS).

With this thesis such an approach for process-aware questionnaire configurators is devel-

oped and implemented for the first time. Initially, all characteristics of a questionnaire are

extracted, collected and transferred into a generic questionnaire model, which describes

every questionnaire by providing a clear basis structure with extension points on several

layers. This model is integrated into the process-structure of a PAIS by mapping question-

naire pages to activities and filter to branches. To validate this approach, a process-aware

questionnaire configurator is implemented and in excerpts used to define an architecture

for further implementations. This should pave the way for approaches, which integrate a

PAIS into a questionnaire configurator, but aim to use different PAIS functionality or PAIS

functionality in a different way. With the automatic execution of process-aware question-

naires only an excerpt from the capabilities of a PAIS is used. A PAIS is still a research

topic, but with the integration in a configurator environment, every upcoming feature may

offer another beneficial functionality for questionnaires. A few features, whose integration

into questionnaires is not considered yet, are presented and described in more detail in

chapter 7.

57

6 Conclusion

58

7 Future Work

In this thesis the execution of a created questionnaire is provided entirely by the PAIS

environment with a developed process-aware questionnaire configurator. Resulting from

that, a standardised access to questionnaires on the available clients is defined, which

reduces the client-side complexity.

But a PAIS offers additional functionality – besides an execution environment – which is yet

unexplored in a configurator environment. With an organisational model, agent structures

are definable by attaching specific abilities, roles or positions to a set of agents. Positions

are connectible to projects or units, whereas the latter is nestable into groups. Based on

this network, agents can be assigned and therefore authorised to handle activities or entire

processes. Consider for example a team of researchers, which plans a survey on the

health risks of smoking. One part of the researchers are doctors, the other psychiatrists.

The interview is divided into two phases: The first one contains questions covering the

respondent’s background related to smoking, the second questions about the respondent’s

health. To ensure that only a specialist – a psychiatrist for the first phase and a doctor

for the second phase – is performing the interview, every researcher is assigned to a role

in the organisational model – either to Psychiatrist or to Doctor. The role Psychiatrist is

then authorised for the activities holding the questions for phase one, whereas the role

Doctor is authorised for the activities related to phase two. As a result, phase one is always

performed by a psychiatrist and phase two by a doctor.

Furthermore, the process schema evolution [15] is an promising PAIS functionality for a

configurator. Because surveys mostly require a development in several iterations (includ-

ing iterations where early versions of questionnaires are put into practice), the continu-

ously adjustment of processes is possible through different process schemes. With every

adjustment a new process scheme is created, which allows instances of earlier process

variants to be finished without interruption. This mechanism could replace or extend the re-

quired version control functionality. With the PAIS instance migration even ad-hoc schema

changes [15] for running instances are realisable allowing a questionnaire in execution to

59

7 Future Work

be adjusted to the new structure. Because constraint sets define question page depen-

dencies, deadlocks are possible. As a result strong checks are necessary for the use of

the instance migration tool and only questionnaires for test purposes should be affected (to

ensure the validity of the survey).

Another interesting aspect of a PAIS is time [16]. Although time dependency is a topic still

in development, a wide range of applications is conceivable. Consider the example above,

where a survey is divided into two phases. To ensure that the respondent is not influenced

by the first interview, the second interview has to be performed at least a month later. If

this time dependency could be expressed via a PAIS, the configurator is able to create

questionnaires with additional constraint types.

All in all the combination of a questionnaire configurator with a PAIS is in the beginning

stage. In this thesis the useful and supporting functionality of a PAIS for a configurator

is analysed in its basics, but through several milestones, the utilisation and integration is

eased for further research.

60

A The Process-aware Questionnaire

Configurator Prototype

Figure A.1: Welcome perspective of a process-aware questionnaire configurator prototype.

61

A The Process-aware Questionnaire Configurator Prototype

Figure A.2: Workspace perspective of a process-aware questionnaire configurator
prototype.

Figure A.3: Questionnaire perspective of a process-aware questionnaire configurator
prototype.

62

Figure A.4: Questionnaire configuration perspective of a process-aware questionnaire con-
figurator prototype.

Figure A.5: Simple element builder of a process-aware questionnaire configurator
prototype.

63

A The Process-aware Questionnaire Configurator Prototype

Figure A.6: Complex element builder of a process-aware questionnaire configurator
prototype.

Figure A.7: Adding a sensor for a complex element in a process-aware questionnaire con-
figurator prototype.

64

Figure A.8: Multimedia elements in a process-aware questionnaire configurator prototype.

Figure A.9: Questionnaire builder of a process-aware questionnaire configurator prototype.

65

Bibliography

[1] ARNIM SCHINDLER: Technische Konzeption und Realisierung des MACE-Tests mittels

mobiler Technologie. University Ulm, 2013

[2] ATTESLANDER, Peter: Methoden der empirischen Sozialforschung. 10., neubearb.

und erw. Aufl. Berlin : Walter de Gruyter, 2003 (De Gruyter Studienbuch). – ISBN

9783503093212

[3] BABBIE, Earl R.: Survey research methods. 2nd ed. Belmont and Calif : Wadsworth

Pub. Co., 1990. – ISBN 9780534981969

[4] BOARDHOST.COM INC.: Pollcode. – http://pollcode.com/, visited 2014-03-28

[5] BURKE, Bill: RESTful Java with JAX-RS. Sebastopol and CA : O’Reilly, 2010. – ISBN

0596158041

[6] CARSTEN SCHMITZ: LimeSurvey Manual. 2014. – http://manual.limesurvey.

org/index.php?title=LimeSurvey_Manual&oldid=59930, visited 2014-03-

28

[7] CHRISTOPHER G. LASATER: Design Patterns. Jones & Bartlett Learning, 2010

[8] ECLIPSE FOUNDATION: Eclipse documentation - Current Release: Eclipse Kepler. –

http://help.eclipse.org/kepler/index.jsp, visited 2014-03-28

[9] FABIAN MAIER: Entwicklung eines mobilen und Service getriebenen Workflow-Clients

zur Unterstützung von evaluierten Studien der klinischen Psychologie am Beispiel der

AristaFlow BPM Suite und Android: Bachelorarbeit an der Universität Ulm. University

Ulm, 2012

[10] GOLDEN HILLS SOFTWARE INC.: SurveyGold User Guide. – http://www.

surveygoldsolutions.com/user-guide.html, visited 2014-03-28

[11] IBM: IBM SPSS Statistics 22 Core System User’s Guide. – ftp:

//public.dhe.ibm.com/software/analytics/spss/documentation/

67

http://pollcode.com/
http://manual.limesurvey.org/index.php?title=LimeSurvey_Manual&oldid=59930
http://manual.limesurvey.org/index.php?title=LimeSurvey_Manual&oldid=59930
http://help.eclipse.org/kepler/index.jsp
http://www.surveygoldsolutions.com/user-guide.html
http://www.surveygoldsolutions.com/user-guide.html
ftp://public.dhe.ibm.com/software/analytics/spss/documentation/statistics/22.0/en/client/Manuals/IBM_SPSS_Statistics_Core_System_User_Guide.pdf
ftp://public.dhe.ibm.com/software/analytics/spss/documentation/statistics/22.0/en/client/Manuals/IBM_SPSS_Statistics_Core_System_User_Guide.pdf
ftp://public.dhe.ibm.com/software/analytics/spss/documentation/statistics/22.0/en/client/Manuals/IBM_SPSS_Statistics_Core_System_User_Guide.pdf

Bibliography

statistics/22.0/en/client/Manuals/IBM_SPSS_Statistics_Core_

System_User_Guide.pdf, visited 2014-03-28

[12] IBM: Welcome to Eclipse. 2005

[13] JÖRG MICHAEL GRÜNING: Technische Konzeption und Realisierung der Laufzei-

tumgebung für ein generisches Fragebogensystem zur IT-gestützten Durchführung

von evaluierten Studien der Klinischen Psychologie. University Ulm, 2012

[14] KITCHENHAM, Barbara A. ; PFLEEGER, Shari L.: Principles of survey research. In:

ACM SIGSOFT Software Engineering Notes 27 (2002), Nr. 2, pp. 20. http://

dx.doi.org/10.1145/511152.511155. – DOI 10.1145/511152.511155. – ISSN

01635948

[15] KROGSTIE, John ; OPDAHL, Andreas ; SINDRE, Guttorm: Lecture Notes in Computer

Science. Bd. 4495: Advanced Information Systems Engineering: 19th International

Conference, CAiSE 2007, Trondheim, Norway, June 11-15, 2007. Proceedings. Berlin

and Heidelberg : Springer-Verlag Berlin Heidelberg, 2007. – ISBN 3540729887

[16] LANZ, Andreas ; WEBER, Barbara ; REICHERT, Manfred: Time patterns for process-

aware information systems. In: Requirements Engineering (2012). http://dx.

doi.org/10.1007/s00766-012-0162-3. – DOI 10.1007/s00766–012–0162–3.

– ISSN 0947–3602

[17] MAXIMILIAN XAVER SCHMID: Technische Konzeption und Realisierung der Anwen-

derumgebung für ein generisches Fragebogensystem zur IT-gestützten Durchführung

von evaluierten Studien der Klinischen Psychologie. University Ulm, 2012

[18] MCAFFER, Jeff ; LEMIEUX, Jean-Michel ; ANISZCZYK, Chris: Eclipse Rich Client

Platform. 2nd ed. Upper Saddle River and NJ : Addison-Wesley, 2010 (The eclipse

series). – ISBN 9780321603784

[19] MCCOLL, E. ; JACOBY, A. ; THOMAS, L.: Health technology assessment. Bd. vol 5

no. 31: Design and use of questionnaires: A review of best practice applicable to sur-

veys of health service staff and patients. National Co-ordinating Centre for HTA.Great

Britain, 2001

[20] MICROSOFT: Rich Text Format (RTF) Specification 1.7. 2003

[21] PORST, Rolf: Fragebogen: Ein Arbeitsbuch. 1. Aufl. Wiesbaden : VS, Verl. für

Sozialwiss, 2008 (Lehrbuch). – ISBN 3531908979

68

ftp://public.dhe.ibm.com/software/analytics/spss/documentation/statistics/22.0/en/client/Manuals/IBM_SPSS_Statistics_Core_System_User_Guide.pdf
ftp://public.dhe.ibm.com/software/analytics/spss/documentation/statistics/22.0/en/client/Manuals/IBM_SPSS_Statistics_Core_System_User_Guide.pdf
ftp://public.dhe.ibm.com/software/analytics/spss/documentation/statistics/22.0/en/client/Manuals/IBM_SPSS_Statistics_Core_System_User_Guide.pdf
http://dx.doi.org/10.1145/511152.511155
http://dx.doi.org/10.1145/511152.511155
http://dx.doi.org/10.1007/s00766-012-0162-3
http://dx.doi.org/10.1007/s00766-012-0162-3

Bibliography

[22] R FOUNDATION: An Introduction to R. – http://www.r-project.org/, visited

2014-03-28

[23] RAAB-STEINER, Elisabeth ; BENESCH, Michael: UTB Schlüsselkompetenzen. Bd.

8406: Der Fragebogen: Von der Forschungsidee zur SPSS-Auswertung. 3., aktual-

isierte und überarb. Aufl. Wien : Facultas-Verl, 2012. – ISBN 978–3–8252–8496–1

[24] RALF EBERT: Eclipse RCP: Entwicklung von Desktop-Anwendungen mit der Eclipse

Rich Client Platform 3.7. 2011

[25] REICHERT, Manfred ; DADAM, Peter: Enabling adaptive process-aware information

systems with ADEPT2. In: Handbook of research on business process modeling, pp.

173–203 (2009)

[26] SAS: SAS/STAT 13.1 User’s Guide. – http://support.sas.com/

documentation/onlinedoc/stat/131/statug.pdf, visited 2014-03-28

[27] SCHOLL, Armin: UTB. Bd. 2413: Die Befragung. 2., überarb. Aufl. Konstanz : UVK-

Verl.-Ges, 2009. – ISBN 3825224139

[28] SEBASTIAN JEHLE: Technische Konzeption und Realisierung der Konfiguratorumge-

bung für ein generisches Fragebogensystem zur IT-gestützten Durchführung von

evaluierten Studien der Klinischen Psychologie. University Ulm, 2012

[29] SENKBEIL, Martin ; IHME, Jan M.: Wie valide sind Papier-und-Bleistift-Tests zur Erfas-

sung computerbezogener Kompetenzen? In: Diagnostica 60 (2014), Nr. 1, pp. 22–

34. http://dx.doi.org/10.1026/0012-1924/a000114. – DOI 10.1026/0012–

1924/a000114. – ISSN 0012–1924

[30] STATPAC INC.: StatPac For Windows User’s Manual. – http://www.statpac.

com/download/Manual.pdf, visited 2014-03-28

[31] STEFANIE WINTER: Quantitative vs. Qualitative Methoden. Karlsruhe,

2000. – http://imihome.imi.uni-karlsruhe.de/nquantitative_vs_

qualitative_methoden_b.html, visited 2014-03-28

[32] STEFFEN SCHERLE: Konzeption und Evaluierung einer domänenspezifischen Model-

lierungsumgebung für prozessorientierte Fragebögen. Ulm, 2014

[33] THE OSGI ALLIANCE: OSGi Core Release 5. 2012. – http://www.osgi.org/

download/r5/osgi.core-5.0.0.pdf, visited 2014-03-28

69

http://www.r-project.org/
http://support.sas.com/documentation/onlinedoc/stat/131/statug.pdf
http://support.sas.com/documentation/onlinedoc/stat/131/statug.pdf
http://dx.doi.org/10.1026/0012-1924/a000114
http://www.statpac.com/download/Manual.pdf
http://www.statpac.com/download/Manual.pdf
http://imihome.imi.uni-karlsruhe.de/nquantitative_vs_qualitative_methoden_b.html
http://imihome.imi.uni-karlsruhe.de/nquantitative_vs_qualitative_methoden_b.html
http://www.osgi.org/download/r5/osgi.core-5.0.0.pdf
http://www.osgi.org/download/r5/osgi.core-5.0.0.pdf

Bibliography

[34] ULLENBOOM, Christian: Java ist auch eine Insel: Das umfassende Handbuch ; [aktuell

zu Java 7 ; Programmieren mit der Java Platform, Standard Edition 7 ; Java von A bis

Z: Einführung, Praxis, Referenz ; von Klassen und Objekten zu Datenstrukturen und

Algorithmen]. 10., aktualisierte und überarb. Aufl. Bonn : Galileo Press, 2012 (Galileo

computing). – ISBN 9783836218023

[35] VOGEL, Lars: Eclipse 4 RCP: The complete guide to Eclipse application development.

Second edition. 2013 (Vogella series). – ISBN 3943747077

[36] W3C: SOAP Version 1.2. – http://www.w3.org/TR/2007/

REC-soap12-part0-20070427/, visited 2014-03-28

[37] W3C: Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification. 07.07.2011

[38] W3C: HTML5. 2014. – http://www.w3.org/TR/html5/, visited 2014-03-28

70

http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www.w3.org/TR/html5/

Name: Juri Schulte Matrikelnummer: 677063

Erklärung

Ich erkläre, dass ich die Arbeit selbständig verfasst und keine anderen als die angegebenen

Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Juri Schulte

	Introduction
	Motivation
	Summary of Contribution

	Fundamentals
	Questionnaires
	Definitions
	Measuring Scales
	Elements
	Construction of a Questionnaire

	Process-aware Workflow
	Activities
	Data Elements
	Branches
	Loops

	Eclipse Rich Client Platform
	RCP Components
	RCP Workbench
	RCP Application Model

	Related Work
	Web-based Applications
	Desktop Applications
	Mobile Applications
	Summary

	Process-aware Questionnaires
	Requirements on the PAIS environment
	A Technical View on Generic Questionnaires
	Integration of Questionnaires in Process-aware Information Systems
	Constraints within Questionnaires

	Architecture and Implementation
	Core Components
	User Interface Components
	Background Components

	Persistence
	Direct Database Connection
	Web Services
	Summary

	Design Patterns
	Usage of the Rich Client Platform
	Summary

	Conclusion
	Future Work
	The Process-aware Questionnaire Configurator Prototype
	Bibliography

